Initial Commit
Browse files- README.md +33 -33
- eval_results_cardiff.json +1 -0
- model.safetensors +1 -1
- training_args.bin +1 -1
README.md
CHANGED
@@ -1,12 +1,12 @@
|
|
1 |
---
|
2 |
-
base_model: microsoft/mdeberta-v3-base
|
3 |
library_name: transformers
|
4 |
license: mit
|
|
|
|
|
|
|
5 |
metrics:
|
6 |
- accuracy
|
7 |
- f1
|
8 |
-
tags:
|
9 |
-
- generated_from_trainer
|
10 |
model-index:
|
11 |
- name: scenario-NON-KD-SCR-COPY-CDF-CL-D2_data-cl-cardiff_cl_only55
|
12 |
results: []
|
@@ -19,9 +19,9 @@ should probably proofread and complete it, then remove this comment. -->
|
|
19 |
|
20 |
This model is a fine-tuned version of [microsoft/mdeberta-v3-base](https://huggingface.co/microsoft/mdeberta-v3-base) on the None dataset.
|
21 |
It achieves the following results on the evaluation set:
|
22 |
-
- Loss: 6.
|
23 |
-
- Accuracy: 0.
|
24 |
-
- F1: 0.
|
25 |
|
26 |
## Model description
|
27 |
|
@@ -52,33 +52,33 @@ The following hyperparameters were used during training:
|
|
52 |
|
53 |
| Training Loss | Epoch | Step | Validation Loss | Accuracy | F1 |
|
54 |
|:-------------:|:-------:|:----:|:---------------:|:--------:|:------:|
|
55 |
-
| No log | 1.0870 | 250 | 1.
|
56 |
-
| 0.
|
57 |
-
| 0.
|
58 |
-
| 0.
|
59 |
-
| 0.
|
60 |
-
| 0.
|
61 |
-
| 0.
|
62 |
-
| 0.
|
63 |
-
| 0.
|
64 |
-
| 0.
|
65 |
-
| 0.
|
66 |
-
| 0.
|
67 |
-
| 0.
|
68 |
-
| 0.
|
69 |
-
| 0.
|
70 |
-
| 0.
|
71 |
-
| 0.
|
72 |
-
| 0.
|
73 |
-
| 0.
|
74 |
-
| 0.
|
75 |
-
| 0.
|
76 |
-
| 0.
|
77 |
-
| 0.
|
78 |
-
| 0.
|
79 |
-
| 0.
|
80 |
-
| 0.
|
81 |
-
| 0.
|
82 |
|
83 |
|
84 |
### Framework versions
|
|
|
1 |
---
|
|
|
2 |
library_name: transformers
|
3 |
license: mit
|
4 |
+
base_model: microsoft/mdeberta-v3-base
|
5 |
+
tags:
|
6 |
+
- generated_from_trainer
|
7 |
metrics:
|
8 |
- accuracy
|
9 |
- f1
|
|
|
|
|
10 |
model-index:
|
11 |
- name: scenario-NON-KD-SCR-COPY-CDF-CL-D2_data-cl-cardiff_cl_only55
|
12 |
results: []
|
|
|
19 |
|
20 |
This model is a fine-tuned version of [microsoft/mdeberta-v3-base](https://huggingface.co/microsoft/mdeberta-v3-base) on the None dataset.
|
21 |
It achieves the following results on the evaluation set:
|
22 |
+
- Loss: 6.8361
|
23 |
+
- Accuracy: 0.3634
|
24 |
+
- F1: 0.3600
|
25 |
|
26 |
## Model description
|
27 |
|
|
|
52 |
|
53 |
| Training Loss | Epoch | Step | Validation Loss | Accuracy | F1 |
|
54 |
|:-------------:|:-------:|:----:|:---------------:|:--------:|:------:|
|
55 |
+
| No log | 1.0870 | 250 | 1.4035 | 0.3627 | 0.3384 |
|
56 |
+
| 0.9258 | 2.1739 | 500 | 1.8269 | 0.3688 | 0.3652 |
|
57 |
+
| 0.9258 | 3.2609 | 750 | 2.2003 | 0.3696 | 0.3691 |
|
58 |
+
| 0.3143 | 4.3478 | 1000 | 3.2084 | 0.3850 | 0.3842 |
|
59 |
+
| 0.3143 | 5.4348 | 1250 | 3.4181 | 0.3719 | 0.3668 |
|
60 |
+
| 0.1172 | 6.5217 | 1500 | 3.9886 | 0.3688 | 0.3622 |
|
61 |
+
| 0.1172 | 7.6087 | 1750 | 4.2183 | 0.3650 | 0.3626 |
|
62 |
+
| 0.0592 | 8.6957 | 2000 | 4.6155 | 0.3665 | 0.3545 |
|
63 |
+
| 0.0592 | 9.7826 | 2250 | 4.7510 | 0.3727 | 0.3685 |
|
64 |
+
| 0.0394 | 10.8696 | 2500 | 5.1707 | 0.3688 | 0.3628 |
|
65 |
+
| 0.0394 | 11.9565 | 2750 | 5.0827 | 0.3681 | 0.3636 |
|
66 |
+
| 0.0238 | 13.0435 | 3000 | 5.5056 | 0.3665 | 0.3535 |
|
67 |
+
| 0.0238 | 14.1304 | 3250 | 5.3337 | 0.3704 | 0.3661 |
|
68 |
+
| 0.0171 | 15.2174 | 3500 | 5.7582 | 0.3735 | 0.3709 |
|
69 |
+
| 0.0171 | 16.3043 | 3750 | 5.9369 | 0.3665 | 0.3598 |
|
70 |
+
| 0.011 | 17.3913 | 4000 | 6.0815 | 0.3765 | 0.3719 |
|
71 |
+
| 0.011 | 18.4783 | 4250 | 6.1316 | 0.3819 | 0.3802 |
|
72 |
+
| 0.0043 | 19.5652 | 4500 | 6.3789 | 0.3727 | 0.3705 |
|
73 |
+
| 0.0043 | 20.6522 | 4750 | 6.4273 | 0.3673 | 0.3664 |
|
74 |
+
| 0.0064 | 21.7391 | 5000 | 6.3039 | 0.3758 | 0.3743 |
|
75 |
+
| 0.0064 | 22.8261 | 5250 | 6.5675 | 0.3619 | 0.3540 |
|
76 |
+
| 0.0031 | 23.9130 | 5500 | 6.5657 | 0.3688 | 0.3650 |
|
77 |
+
| 0.0031 | 25.0 | 5750 | 6.6382 | 0.3696 | 0.3666 |
|
78 |
+
| 0.0016 | 26.0870 | 6000 | 6.7416 | 0.3681 | 0.3643 |
|
79 |
+
| 0.0016 | 27.1739 | 6250 | 6.7141 | 0.3711 | 0.3677 |
|
80 |
+
| 0.0006 | 28.2609 | 6500 | 6.7905 | 0.3642 | 0.3600 |
|
81 |
+
| 0.0006 | 29.3478 | 6750 | 6.8361 | 0.3634 | 0.3600 |
|
82 |
|
83 |
|
84 |
### Framework versions
|
eval_results_cardiff.json
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
{"arabic": {"f1": 0.4389630214241446, "accuracy": 0.4379310344827586, "confusion_matrix": [[130, 89, 71], [112, 128, 50], [88, 79, 123]]}, "english": {"f1": 0.4592492597592343, "accuracy": 0.46206896551724136, "confusion_matrix": [[167, 85, 38], [126, 98, 66], [95, 58, 137]]}, "french": {"f1": 0.3537532675492514, "accuracy": 0.3632183908045977, "confusion_matrix": [[113, 142, 35], [87, 142, 61], [87, 142, 61]]}, "german": {"f1": 0.5548636674472034, "accuracy": 0.5551724137931034, "confusion_matrix": [[164, 51, 75], [77, 149, 64], [63, 57, 170]]}, "hindi": {"f1": 0.429723755201131, "accuracy": 0.4298850574712644, "confusion_matrix": [[136, 77, 77], [108, 116, 66], [92, 76, 122]]}, "italian": {"f1": 0.4904300744688119, "accuracy": 0.5057471264367817, "confusion_matrix": [[84, 113, 93], [26, 204, 60], [48, 90, 152]]}, "portuguese": {"f1": 0.42424373082442157, "accuracy": 0.435632183908046, "confusion_matrix": [[164, 63, 63], [130, 70, 90], [90, 55, 145]]}, "spanish": {"f1": 0.485055118995332, "accuracy": 0.4908045977011494, "confusion_matrix": [[152, 71, 67], [96, 100, 94], [59, 56, 175]]}, "all": {"f1": 0.45817594583107385, "accuracy": 0.4579022988505747, "confusion_matrix": [[1099, 690, 531], [756, 1016, 548], [631, 617, 1072]]}}
|
model.safetensors
CHANGED
@@ -1,3 +1,3 @@
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
-
oid sha256:
|
3 |
size 945150428
|
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:3d4bf1f6c0cd489ae1e9710c2cba1ca1213336f7c49b41dbfc882bfbce4bb77a
|
3 |
size 945150428
|
training_args.bin
CHANGED
@@ -1,3 +1,3 @@
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
-
oid sha256:
|
3 |
size 5304
|
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:82ce530a5bbbb9c4ce28416167eb26b8667e27e25f6f4984c07ebe0fe0d53cc2
|
3 |
size 5304
|