--- library_name: transformers license: mit base_model: microsoft/mdeberta-v3-base tags: - generated_from_trainer metrics: - accuracy - f1 model-index: - name: scenario-NON-KD-SCR-COPY-CDF-CL-D2_data-cl-cardiff_cl_only55 results: [] --- # scenario-NON-KD-SCR-COPY-CDF-CL-D2_data-cl-cardiff_cl_only55 This model is a fine-tuned version of [microsoft/mdeberta-v3-base](https://huggingface.co/microsoft/mdeberta-v3-base) on the None dataset. It achieves the following results on the evaluation set: - Loss: 6.8361 - Accuracy: 0.3634 - F1: 0.3600 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 32 - eval_batch_size: 32 - seed: 55 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 30 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | F1 | |:-------------:|:-------:|:----:|:---------------:|:--------:|:------:| | No log | 1.0870 | 250 | 1.4035 | 0.3627 | 0.3384 | | 0.9258 | 2.1739 | 500 | 1.8269 | 0.3688 | 0.3652 | | 0.9258 | 3.2609 | 750 | 2.2003 | 0.3696 | 0.3691 | | 0.3143 | 4.3478 | 1000 | 3.2084 | 0.3850 | 0.3842 | | 0.3143 | 5.4348 | 1250 | 3.4181 | 0.3719 | 0.3668 | | 0.1172 | 6.5217 | 1500 | 3.9886 | 0.3688 | 0.3622 | | 0.1172 | 7.6087 | 1750 | 4.2183 | 0.3650 | 0.3626 | | 0.0592 | 8.6957 | 2000 | 4.6155 | 0.3665 | 0.3545 | | 0.0592 | 9.7826 | 2250 | 4.7510 | 0.3727 | 0.3685 | | 0.0394 | 10.8696 | 2500 | 5.1707 | 0.3688 | 0.3628 | | 0.0394 | 11.9565 | 2750 | 5.0827 | 0.3681 | 0.3636 | | 0.0238 | 13.0435 | 3000 | 5.5056 | 0.3665 | 0.3535 | | 0.0238 | 14.1304 | 3250 | 5.3337 | 0.3704 | 0.3661 | | 0.0171 | 15.2174 | 3500 | 5.7582 | 0.3735 | 0.3709 | | 0.0171 | 16.3043 | 3750 | 5.9369 | 0.3665 | 0.3598 | | 0.011 | 17.3913 | 4000 | 6.0815 | 0.3765 | 0.3719 | | 0.011 | 18.4783 | 4250 | 6.1316 | 0.3819 | 0.3802 | | 0.0043 | 19.5652 | 4500 | 6.3789 | 0.3727 | 0.3705 | | 0.0043 | 20.6522 | 4750 | 6.4273 | 0.3673 | 0.3664 | | 0.0064 | 21.7391 | 5000 | 6.3039 | 0.3758 | 0.3743 | | 0.0064 | 22.8261 | 5250 | 6.5675 | 0.3619 | 0.3540 | | 0.0031 | 23.9130 | 5500 | 6.5657 | 0.3688 | 0.3650 | | 0.0031 | 25.0 | 5750 | 6.6382 | 0.3696 | 0.3666 | | 0.0016 | 26.0870 | 6000 | 6.7416 | 0.3681 | 0.3643 | | 0.0016 | 27.1739 | 6250 | 6.7141 | 0.3711 | 0.3677 | | 0.0006 | 28.2609 | 6500 | 6.7905 | 0.3642 | 0.3600 | | 0.0006 | 29.3478 | 6750 | 6.8361 | 0.3634 | 0.3600 | ### Framework versions - Transformers 4.44.2 - Pytorch 2.1.1+cu121 - Datasets 2.14.5 - Tokenizers 0.19.1