--- base_model: microsoft/mdeberta-v3-base library_name: transformers license: mit metrics: - accuracy - f1 tags: - generated_from_trainer model-index: - name: scenario-NON-KD-SCR-COPY-CDF-CL-D2_data-cl-cardiff_cl_only66 results: [] --- # scenario-NON-KD-SCR-COPY-CDF-CL-D2_data-cl-cardiff_cl_only66 This model is a fine-tuned version of [microsoft/mdeberta-v3-base](https://huggingface.co/microsoft/mdeberta-v3-base) on the None dataset. It achieves the following results on the evaluation set: - Loss: 6.5386 - Accuracy: 0.3465 - F1: 0.3414 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 32 - eval_batch_size: 32 - seed: 66 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 30 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | F1 | |:-------------:|:-------:|:----:|:---------------:|:--------:|:------:| | No log | 1.0870 | 250 | 1.2253 | 0.3488 | 0.3475 | | 0.9005 | 2.1739 | 500 | 2.0350 | 0.3789 | 0.3632 | | 0.9005 | 3.2609 | 750 | 2.5675 | 0.3657 | 0.3555 | | 0.3085 | 4.3478 | 1000 | 3.0866 | 0.3573 | 0.3545 | | 0.3085 | 5.4348 | 1250 | 3.2835 | 0.3665 | 0.3656 | | 0.0989 | 6.5217 | 1500 | 3.7686 | 0.3611 | 0.3591 | | 0.0989 | 7.6087 | 1750 | 4.3473 | 0.3519 | 0.3466 | | 0.0419 | 8.6957 | 2000 | 4.5813 | 0.3596 | 0.3587 | | 0.0419 | 9.7826 | 2250 | 4.3827 | 0.3480 | 0.3406 | | 0.0259 | 10.8696 | 2500 | 4.5804 | 0.3580 | 0.3502 | | 0.0259 | 11.9565 | 2750 | 4.7408 | 0.3403 | 0.3301 | | 0.0212 | 13.0435 | 3000 | 5.1266 | 0.3449 | 0.3369 | | 0.0212 | 14.1304 | 3250 | 5.1394 | 0.3372 | 0.3232 | | 0.0161 | 15.2174 | 3500 | 5.1845 | 0.3503 | 0.3449 | | 0.0161 | 16.3043 | 3750 | 5.5978 | 0.3441 | 0.3324 | | 0.0086 | 17.3913 | 4000 | 5.5039 | 0.3441 | 0.3428 | | 0.0086 | 18.4783 | 4250 | 5.2184 | 0.3480 | 0.3462 | | 0.0078 | 19.5652 | 4500 | 5.5761 | 0.3503 | 0.3429 | | 0.0078 | 20.6522 | 4750 | 6.1793 | 0.3449 | 0.3402 | | 0.0041 | 21.7391 | 5000 | 6.2729 | 0.3557 | 0.3460 | | 0.0041 | 22.8261 | 5250 | 6.1750 | 0.3495 | 0.3475 | | 0.0034 | 23.9130 | 5500 | 6.6237 | 0.3503 | 0.3424 | | 0.0034 | 25.0 | 5750 | 6.5137 | 0.3480 | 0.3449 | | 0.0034 | 26.0870 | 6000 | 6.4670 | 0.3449 | 0.3421 | | 0.0034 | 27.1739 | 6250 | 6.5232 | 0.3511 | 0.3484 | | 0.0012 | 28.2609 | 6500 | 6.5751 | 0.3480 | 0.3424 | | 0.0012 | 29.3478 | 6750 | 6.5386 | 0.3465 | 0.3414 | ### Framework versions - Transformers 4.44.2 - Pytorch 2.1.1+cu121 - Datasets 2.14.5 - Tokenizers 0.19.1