File size: 4,567 Bytes
935607a
 
 
 
54f1f56
 
935607a
 
 
54f1f56
 
935607a
 
 
 
 
54f1f56
935607a
 
 
 
 
 
 
54f1f56
935607a
54f1f56
 
935607a
54f1f56
935607a
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
---
base_model: microsoft/mdeberta-v3-base
datasets:
- massive
library_name: transformers
license: mit
metrics:
- accuracy
- f1
tags:
- generated_from_trainer
model-index:
- name: scenario-NON-KD-SCR-D2_data-AmazonScience_massive_all_1_144
  results:
  - task:
      type: text-classification
      name: Text Classification
    dataset:
      name: massive
      type: massive
      config: all_1.1
      split: validation
      args: all_1.1
    metrics:
    - type: accuracy
      value: 0.8158178516024065
      name: Accuracy
    - type: f1
      value: 0.790068262479823
      name: F1
---

<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->

# scenario-NON-KD-SCR-D2_data-AmazonScience_massive_all_1_144

This model is a fine-tuned version of [microsoft/mdeberta-v3-base](https://huggingface.co/microsoft/mdeberta-v3-base) on the massive dataset.
It achieves the following results on the evaluation set:
- Loss: 1.9525
- Accuracy: 0.8158
- F1: 0.7901

## Model description

More information needed

## Intended uses & limitations

More information needed

## Training and evaluation data

More information needed

## Training procedure

### Training hyperparameters

The following hyperparameters were used during training:
- learning_rate: 5e-05
- train_batch_size: 32
- eval_batch_size: 32
- seed: 44
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 10

### Training results

| Training Loss | Epoch  | Step   | Validation Loss | Accuracy | F1     |
|:-------------:|:------:|:------:|:---------------:|:--------:|:------:|
| 1.2857        | 0.2672 | 5000   | 1.2982          | 0.6464   | 0.5527 |
| 0.9859        | 0.5344 | 10000  | 1.0042          | 0.7331   | 0.6625 |
| 0.8126        | 0.8017 | 15000  | 0.9054          | 0.7613   | 0.6991 |
| 0.5568        | 1.0689 | 20000  | 0.8391          | 0.7828   | 0.7319 |
| 0.5531        | 1.3361 | 25000  | 0.8316          | 0.7886   | 0.7394 |
| 0.5497        | 1.6033 | 30000  | 0.7894          | 0.8011   | 0.7618 |
| 0.5099        | 1.8706 | 35000  | 0.7805          | 0.8050   | 0.7616 |
| 0.3327        | 2.1378 | 40000  | 0.8676          | 0.8040   | 0.7633 |
| 0.3482        | 2.4050 | 45000  | 0.8556          | 0.8060   | 0.7700 |
| 0.3506        | 2.6722 | 50000  | 0.8309          | 0.8087   | 0.7816 |
| 0.3508        | 2.9394 | 55000  | 0.8149          | 0.8105   | 0.7683 |
| 0.221         | 3.2067 | 60000  | 0.9645          | 0.8070   | 0.7760 |
| 0.222         | 3.4739 | 65000  | 0.9305          | 0.8113   | 0.7836 |
| 0.2414        | 3.7411 | 70000  | 0.9195          | 0.8122   | 0.7846 |
| 0.2032        | 4.0083 | 75000  | 0.9858          | 0.8141   | 0.7855 |
| 0.1457        | 4.2756 | 80000  | 1.0865          | 0.8130   | 0.7885 |
| 0.155         | 4.5428 | 85000  | 1.0413          | 0.8133   | 0.7830 |
| 0.1535        | 4.8100 | 90000  | 1.0934          | 0.8157   | 0.7887 |
| 0.0888        | 5.0772 | 95000  | 1.2135          | 0.8152   | 0.7896 |
| 0.0931        | 5.3444 | 100000 | 1.3402          | 0.8121   | 0.7857 |
| 0.1024        | 5.6117 | 105000 | 1.2838          | 0.8107   | 0.7848 |
| 0.1044        | 5.8789 | 110000 | 1.3039          | 0.8133   | 0.7885 |
| 0.0595        | 6.1461 | 115000 | 1.4268          | 0.8129   | 0.7877 |
| 0.0678        | 6.4133 | 120000 | 1.4729          | 0.8132   | 0.7866 |
| 0.0676        | 6.6806 | 125000 | 1.5201          | 0.8127   | 0.7859 |
| 0.0779        | 6.9478 | 130000 | 1.4956          | 0.8151   | 0.7905 |
| 0.0429        | 7.2150 | 135000 | 1.6860          | 0.8142   | 0.7897 |
| 0.0507        | 7.4822 | 140000 | 1.6751          | 0.8124   | 0.7842 |
| 0.0463        | 7.7495 | 145000 | 1.7002          | 0.8133   | 0.7866 |
| 0.034         | 8.0167 | 150000 | 1.7596          | 0.8135   | 0.7885 |
| 0.0254        | 8.2839 | 155000 | 1.8539          | 0.8133   | 0.7876 |
| 0.0294        | 8.5511 | 160000 | 1.8675          | 0.8146   | 0.7862 |
| 0.0296        | 8.8183 | 165000 | 1.8644          | 0.8142   | 0.7862 |
| 0.0174        | 9.0856 | 170000 | 1.9111          | 0.8151   | 0.7899 |
| 0.0159        | 9.3528 | 175000 | 1.9342          | 0.8156   | 0.7896 |
| 0.0171        | 9.6200 | 180000 | 1.9399          | 0.8161   | 0.7901 |
| 0.0209        | 9.8872 | 185000 | 1.9525          | 0.8158   | 0.7901 |


### Framework versions

- Transformers 4.44.2
- Pytorch 2.1.1+cu121
- Datasets 2.14.5
- Tokenizers 0.19.1