--- license: mit base_model: microsoft/mdeberta-v3-base tags: - generated_from_trainer datasets: - massive metrics: - accuracy - f1 model-index: - name: scenario-TCR_data-cl-massive_all_1_1 results: - task: name: Text Classification type: text-classification dataset: name: massive type: massive config: all_1.1 split: validation args: all_1.1 metrics: - name: Accuracy type: accuracy value: 0.7990745295221439 - name: F1 type: f1 value: 0.7564886611883039 --- # scenario-TCR_data-cl-massive_all_1_1 This model is a fine-tuned version of [microsoft/mdeberta-v3-base](https://huggingface.co/microsoft/mdeberta-v3-base) on the massive dataset. It achieves the following results on the evaluation set: - Loss: 1.3782 - Accuracy: 0.7991 - F1: 0.7565 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 32 - eval_batch_size: 32 - seed: 66 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 5 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | F1 | |:-------------:|:-----:|:-----:|:---------------:|:--------:|:------:| | 0.4764 | 0.56 | 5000 | 0.9292 | 0.7898 | 0.7395 | | 0.2624 | 1.11 | 10000 | 0.9850 | 0.7935 | 0.7392 | | 0.2344 | 1.67 | 15000 | 1.0603 | 0.7976 | 0.7472 | | 0.1556 | 2.22 | 20000 | 1.1387 | 0.7925 | 0.7431 | | 0.1488 | 2.78 | 25000 | 1.1552 | 0.7960 | 0.7552 | | 0.1048 | 3.33 | 30000 | 1.3310 | 0.7943 | 0.7452 | | 0.101 | 3.89 | 35000 | 1.2902 | 0.7938 | 0.7516 | | 0.0618 | 4.45 | 40000 | 1.3782 | 0.7991 | 0.7565 | ### Framework versions - Transformers 4.33.3 - Pytorch 2.1.1+cu121 - Datasets 2.14.5 - Tokenizers 0.13.3