--- base_model: microsoft/mdeberta-v3-base library_name: transformers license: mit metrics: - precision - recall - f1 - accuracy tags: - generated_from_trainer model-index: - name: scenario-kd-pre-ner-full-mdeberta_data-univner_en55 results: [] --- # scenario-kd-pre-ner-full-mdeberta_data-univner_en55 This model is a fine-tuned version of [microsoft/mdeberta-v3-base](https://huggingface.co/microsoft/mdeberta-v3-base) on the None dataset. It achieves the following results on the evaluation set: - Loss: 62.9050 - Precision: 0.7596 - Recall: 0.7360 - F1: 0.7476 - Accuracy: 0.9801 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 3e-05 - train_batch_size: 8 - eval_batch_size: 32 - seed: 55 - gradient_accumulation_steps: 4 - total_train_batch_size: 32 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 10 ### Training results | Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy | |:-------------:|:------:|:----:|:---------------:|:---------:|:------:|:------:|:--------:| | 148.0892 | 1.2755 | 500 | 103.3325 | 0.3059 | 0.2578 | 0.2798 | 0.9556 | | 87.0932 | 2.5510 | 1000 | 80.2722 | 0.6704 | 0.6739 | 0.6722 | 0.9755 | | 72.3221 | 3.8265 | 1500 | 72.3381 | 0.7265 | 0.7039 | 0.7150 | 0.9775 | | 65.7687 | 5.1020 | 2000 | 68.3339 | 0.7549 | 0.7174 | 0.7357 | 0.9783 | | 61.9669 | 6.3776 | 2500 | 65.6428 | 0.7442 | 0.7319 | 0.7380 | 0.9789 | | 59.6427 | 7.6531 | 3000 | 64.0535 | 0.7581 | 0.7267 | 0.7421 | 0.9798 | | 58.1252 | 8.9286 | 3500 | 62.9050 | 0.7596 | 0.7360 | 0.7476 | 0.9801 | ### Framework versions - Transformers 4.44.2 - Pytorch 2.1.1+cu121 - Datasets 2.14.5 - Tokenizers 0.19.1