--- library_name: transformers license: mit base_model: microsoft/mdeberta-v3-base tags: - generated_from_trainer metrics: - precision - recall - f1 - accuracy model-index: - name: scenario-non-kd-scr-ner-full-mdeberta_data-univner_full66 results: [] --- # scenario-non-kd-scr-ner-full-mdeberta_data-univner_full66 This model is a fine-tuned version of [microsoft/mdeberta-v3-base](https://huggingface.co/microsoft/mdeberta-v3-base) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.3189 - Precision: 0.6246 - Recall: 0.5741 - F1: 0.5983 - Accuracy: 0.9618 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 3e-05 - train_batch_size: 32 - eval_batch_size: 32 - seed: 66 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 30 ### Training results | Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy | |:-------------:|:-------:|:-----:|:---------------:|:---------:|:------:|:------:|:--------:| | 0.3108 | 0.2910 | 500 | 0.2429 | 0.3192 | 0.2232 | 0.2627 | 0.9338 | | 0.1942 | 0.5821 | 1000 | 0.1982 | 0.4385 | 0.3207 | 0.3705 | 0.9447 | | 0.1438 | 0.8731 | 1500 | 0.1652 | 0.4817 | 0.4732 | 0.4774 | 0.9522 | | 0.1089 | 1.1641 | 2000 | 0.1553 | 0.5015 | 0.5252 | 0.5131 | 0.9558 | | 0.0849 | 1.4552 | 2500 | 0.1575 | 0.5738 | 0.5229 | 0.5471 | 0.9587 | | 0.0794 | 1.7462 | 3000 | 0.1483 | 0.5344 | 0.5574 | 0.5457 | 0.9588 | | 0.071 | 2.0373 | 3500 | 0.1583 | 0.5706 | 0.5640 | 0.5673 | 0.9600 | | 0.0435 | 2.3283 | 4000 | 0.1623 | 0.5559 | 0.5660 | 0.5609 | 0.9588 | | 0.0471 | 2.6193 | 4500 | 0.1561 | 0.5563 | 0.5905 | 0.5729 | 0.9607 | | 0.0462 | 2.9104 | 5000 | 0.1557 | 0.5755 | 0.5960 | 0.5856 | 0.9610 | | 0.028 | 3.2014 | 5500 | 0.1784 | 0.5995 | 0.6136 | 0.6065 | 0.9623 | | 0.026 | 3.4924 | 6000 | 0.1895 | 0.6169 | 0.5555 | 0.5846 | 0.9620 | | 0.0257 | 3.7835 | 6500 | 0.1790 | 0.6020 | 0.6068 | 0.6044 | 0.9621 | | 0.025 | 4.0745 | 7000 | 0.1943 | 0.6036 | 0.6048 | 0.6042 | 0.9625 | | 0.0138 | 4.3655 | 7500 | 0.2013 | 0.5832 | 0.6203 | 0.6012 | 0.9619 | | 0.0165 | 4.6566 | 8000 | 0.2146 | 0.6079 | 0.5865 | 0.5970 | 0.9621 | | 0.0163 | 4.9476 | 8500 | 0.2123 | 0.6071 | 0.5827 | 0.5947 | 0.9615 | | 0.0099 | 5.2386 | 9000 | 0.2290 | 0.6196 | 0.5957 | 0.6074 | 0.9627 | | 0.0093 | 5.5297 | 9500 | 0.2274 | 0.6019 | 0.6143 | 0.6081 | 0.9616 | | 0.0105 | 5.8207 | 10000 | 0.2326 | 0.6102 | 0.5806 | 0.5950 | 0.9618 | | 0.0096 | 6.1118 | 10500 | 0.2335 | 0.6016 | 0.6198 | 0.6106 | 0.9617 | | 0.0062 | 6.4028 | 11000 | 0.2542 | 0.6230 | 0.5866 | 0.6043 | 0.9626 | | 0.0069 | 6.6938 | 11500 | 0.2510 | 0.6216 | 0.6066 | 0.6140 | 0.9627 | | 0.0079 | 6.9849 | 12000 | 0.2457 | 0.5980 | 0.6067 | 0.6023 | 0.9620 | | 0.0051 | 7.2759 | 12500 | 0.2603 | 0.6330 | 0.5842 | 0.6076 | 0.9626 | | 0.0054 | 7.5669 | 13000 | 0.2627 | 0.6237 | 0.6025 | 0.6129 | 0.9625 | | 0.0053 | 7.8580 | 13500 | 0.2680 | 0.5916 | 0.6227 | 0.6068 | 0.9617 | | 0.0045 | 8.1490 | 14000 | 0.2709 | 0.6004 | 0.6068 | 0.6036 | 0.9619 | | 0.0033 | 8.4400 | 14500 | 0.2873 | 0.6024 | 0.5940 | 0.5982 | 0.9616 | | 0.0043 | 8.7311 | 15000 | 0.2806 | 0.6167 | 0.6032 | 0.6099 | 0.9624 | | 0.0048 | 9.0221 | 15500 | 0.2733 | 0.6091 | 0.5918 | 0.6003 | 0.9623 | | 0.0028 | 9.3132 | 16000 | 0.2804 | 0.5862 | 0.6188 | 0.6021 | 0.9618 | | 0.0029 | 9.6042 | 16500 | 0.2829 | 0.6201 | 0.6019 | 0.6109 | 0.9624 | | 0.0031 | 9.8952 | 17000 | 0.2828 | 0.6154 | 0.5989 | 0.6070 | 0.9620 | | 0.0029 | 10.1863 | 17500 | 0.2876 | 0.6075 | 0.6094 | 0.6085 | 0.9625 | | 0.0026 | 10.4773 | 18000 | 0.3005 | 0.6329 | 0.5859 | 0.6085 | 0.9623 | | 0.0025 | 10.7683 | 18500 | 0.2942 | 0.6063 | 0.6201 | 0.6131 | 0.9619 | | 0.0025 | 11.0594 | 19000 | 0.2948 | 0.6115 | 0.6102 | 0.6108 | 0.9622 | | 0.0017 | 11.3504 | 19500 | 0.2995 | 0.6143 | 0.5965 | 0.6052 | 0.9621 | | 0.002 | 11.6414 | 20000 | 0.2930 | 0.6022 | 0.6061 | 0.6042 | 0.9616 | | 0.002 | 11.9325 | 20500 | 0.3087 | 0.6222 | 0.5910 | 0.6062 | 0.9624 | | 0.0018 | 12.2235 | 21000 | 0.3114 | 0.5903 | 0.6217 | 0.6056 | 0.9617 | | 0.0014 | 12.5146 | 21500 | 0.3189 | 0.6246 | 0.5741 | 0.5983 | 0.9618 | ### Framework versions - Transformers 4.44.2 - Pytorch 2.1.1+cu121 - Datasets 2.14.5 - Tokenizers 0.19.1