import tensorflow as tf from transformers import AutoTokenizer, TFAutoModelForSeq2SeqLM # Load the fine-tuned model and tokenizer model = TFAutoModelForSeq2SeqLM.from_pretrained('models\\greeting_model\\saved_model') tokenizer = AutoTokenizer.from_pretrained('models\\greeting_model\\saved_model') def generate_response(input_text, max_length=500): # Tokenize the input text input_ids = tokenizer.encode(input_text, return_tensors='tf') # Generate the response from the model outputs = model.generate(input_ids, max_length=max_length, num_beams=4, early_stopping=True) # Decode the generated tokens back to text decoded_response = tokenizer.decode(outputs[0], skip_special_tokens=True) return decoded_response