from transformers import T5Tokenizer, TFT5ForConditionalGeneration import tensorflow as tf # Load the model and tokenizer model = TFT5ForConditionalGeneration.from_pretrained('models\\medication_info_model\\saved_model') tokenizer = T5Tokenizer.from_pretrained('models\\medication_info_model\\tokenizer') def generate_answer(question): input_text = f"question: {question}" encoding = tokenizer( input_text, max_length=1024, padding='max_length', truncation=True, return_tensors='tf' ) input_ids = encoding['input_ids'] attention_mask = encoding['attention_mask'] generated_text = "" max_length = 1024 current_input_ids = input_ids while True: outputs = model.generate( input_ids=current_input_ids, attention_mask=attention_mask, max_length=max_length, num_beams=5, early_stopping=True, no_repeat_ngram_size=2, return_dict_in_generate=True, output_scores=True ) text = tokenizer.decode(outputs.sequences[0], skip_special_tokens=True) generated_text += text if len(text.split()) < max_length: break current_input_ids = tokenizer.encode(text, return_tensors='tf') attention_mask = tf.ones_like(current_input_ids) return generated_text