|
from torch.optim.lr_scheduler import ReduceLROnPlateau
|
|
from sklearn.metrics import accuracy_score
|
|
|
|
class EarlyStopping:
|
|
def __init__(self, patience=5, verbose=False, delta=0):
|
|
self.patience = patience
|
|
self.verbose = verbose
|
|
self.counter = 0
|
|
self.best_score = None
|
|
self.early_stop = False
|
|
self.delta = delta
|
|
|
|
def __call__(self, val_loss, model):
|
|
score = -val_loss
|
|
|
|
if self.best_score is None:
|
|
self.best_score = score
|
|
self.save_checkpoint(val_loss, model)
|
|
elif score < self.best_score + self.delta:
|
|
self.counter += 1
|
|
if self.verbose:
|
|
print(f'EarlyStopping counter: {self.counter} out of {self.patience}')
|
|
if self.counter >= self.patience:
|
|
self.early_stop = True
|
|
else:
|
|
self.best_score = score
|
|
self.save_checkpoint(val_loss, model)
|
|
self.counter = 0
|
|
|
|
def save_checkpoint(self, val_loss, model):
|
|
if self.verbose:
|
|
print(f'Validation loss decreased ({self.best_score:.6f} --> {val_loss:.6f}). Saving model ...')
|
|
torch.save(model.state_dict(), 'checkpoint.pt')
|
|
|