File size: 2,065 Bytes
e7a9639 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 |
---
library_name: peft
license: apache-2.0
base_model: muchad/idt5-base
tags:
- generated_from_trainer
metrics:
- rouge
- bleu
model-index:
- name: idt5-base-qg_adapter_cross
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# idt5-base-qg_adapter_cross
This model is a fine-tuned version of [muchad/idt5-base](https://huggingface.co/muchad/idt5-base) on the None dataset.
It achieves the following results on the evaluation set:
- Loss: 2.5024
- Rouge1: 0.2095
- Rouge2: 0.0666
- Rougel: 0.1956
- Rougelsum: 0.1956
- Bleu: 0.0302
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 0.0001
- train_batch_size: 8
- eval_batch_size: 8
- seed: 42
- optimizer: Use adamw_torch with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
- lr_scheduler_type: linear
- num_epochs: 5
### Training results
| Training Loss | Epoch | Step | Validation Loss | Rouge1 | Rouge2 | Rougel | Rougelsum | Bleu |
|:-------------:|:-----:|:-----:|:---------------:|:------:|:------:|:------:|:---------:|:------:|
| 4.2434 | 1.0 | 7645 | 2.8841 | 0.1168 | 0.0279 | 0.1128 | 0.1128 | 0.0182 |
| 3.9586 | 2.0 | 15290 | 2.6465 | 0.1805 | 0.0574 | 0.1694 | 0.1694 | 0.0258 |
| 3.8339 | 3.0 | 22935 | 2.5548 | 0.2063 | 0.0671 | 0.1931 | 0.1931 | 0.0281 |
| 3.7775 | 4.0 | 30580 | 2.5127 | 0.2073 | 0.0665 | 0.1936 | 0.1937 | 0.0292 |
| 3.7519 | 5.0 | 38225 | 2.5024 | 0.2095 | 0.0666 | 0.1956 | 0.1956 | 0.0302 |
### Framework versions
- PEFT 0.13.2
- Transformers 4.46.0
- Pytorch 2.4.0a0+f70bd71a48.nv24.06
- Datasets 3.0.2
- Tokenizers 0.20.1 |