# HarmAug: Effective Data Augmentation for Knowledge Distillation of Safety Guard Models This repository contains code for reproducing HarmAug introduced in **HarmAug: Effective Data Augmentation for Knowledge Distillation of Safety Guard Models** Seanie Lee*, Haebin Seong*, Dong Bok Lee, Minki Kang, Xiaoyin Chen, Dominik Wagner, Yoshua Bengio, Juho Lee, Sung Ju Hwang (*: Equal contribution) [[arXiv link]](https://arxiv.org/abs/2410.01524) [[Model link]](https://huggingface.co/AnonHB/HarmAug_Guard_Model_deberta_v3_large_finetuned) [[Dataset link]](https://huggingface.co/datasets/AnonHB/HarmAug_generated_dataset) ![concept_figure](https://github.com/user-attachments/assets/3e61f7c6-e0c2-4107-bb4e-9b4d2c7ba961) ![overall_comparison_broken](https://github.com/user-attachments/assets/03cc0fa5-e9dc-4d78-a5b8-a2c122672fea) ## Reproduction Steps First, we recommend to create a conda environment with python 3.10. ``` conda create -n harmaug python=3.10 conda activate harmaug ``` After that, install the requirements. ``` pip install -r requirements.txt ``` Then, download necessary files from [Google Drive](https://drive.google.com/drive/folders/1oLUMPauXYtEBP7rvbULXL4hHp9Ck_yqg?usp=drive_link) and put them into their appropriate folders. ``` mv kd_dataset@harmaug.json ./data ``` Finally, you can start the knowledge distillation process. ``` bash script/kd.sh ``` ## Reference To cite our paper, please use this BibTex ```bibtex @article{lee2024harmaug, title={{HarmAug}: Effective Data Augmentation for Knowledge Distillation of Safety Guard Models}, author={Lee, Seanie and Seong, Haebin and Lee, Dong Bok and Kang, Minki and Chen, Xiaoyin and Wagner, Dominik and Bengio, Yoshua and Lee, Juho and Hwang, Sung Ju}, journal={arXiv preprint arXiv:2410.01524}, year={2024} } ```