Model save
Browse files- README.md +113 -0
- model.safetensors +1 -1
README.md
ADDED
@@ -0,0 +1,113 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
license: apache-2.0
|
3 |
+
base_model: microsoft/swin-tiny-patch4-window7-224
|
4 |
+
tags:
|
5 |
+
- generated_from_trainer
|
6 |
+
datasets:
|
7 |
+
- imagefolder
|
8 |
+
metrics:
|
9 |
+
- accuracy
|
10 |
+
- recall
|
11 |
+
- precision
|
12 |
+
- f1
|
13 |
+
model-index:
|
14 |
+
- name: FFPP-Raw_1FPS_faces-expand-0-aligned-normalize-image-mean-std
|
15 |
+
results:
|
16 |
+
- task:
|
17 |
+
name: Image Classification
|
18 |
+
type: image-classification
|
19 |
+
dataset:
|
20 |
+
name: imagefolder
|
21 |
+
type: imagefolder
|
22 |
+
config: default
|
23 |
+
split: test
|
24 |
+
args: default
|
25 |
+
metrics:
|
26 |
+
- name: Accuracy
|
27 |
+
type: accuracy
|
28 |
+
value: 0.99837772836593
|
29 |
+
- name: Recall
|
30 |
+
type: recall
|
31 |
+
value: 0.9926393819168928
|
32 |
+
- name: Precision
|
33 |
+
type: precision
|
34 |
+
value: 0.9998948309407373
|
35 |
+
- name: F1
|
36 |
+
type: f1
|
37 |
+
value: 0.9962538967332931
|
38 |
+
---
|
39 |
+
|
40 |
+
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
|
41 |
+
should probably proofread and complete it, then remove this comment. -->
|
42 |
+
|
43 |
+
# FFPP-Raw_1FPS_faces-expand-0-aligned-normalize-image-mean-std
|
44 |
+
|
45 |
+
This model is a fine-tuned version of [microsoft/swin-tiny-patch4-window7-224](https://huggingface.co/microsoft/swin-tiny-patch4-window7-224) on the imagefolder dataset.
|
46 |
+
It achieves the following results on the evaluation set:
|
47 |
+
- Loss: 0.0031
|
48 |
+
- Accuracy: 0.9984
|
49 |
+
- Recall: 0.9926
|
50 |
+
- Precision: 0.9999
|
51 |
+
- F1: 0.9963
|
52 |
+
- Roc Auc: 1.0000
|
53 |
+
|
54 |
+
## Model description
|
55 |
+
|
56 |
+
More information needed
|
57 |
+
|
58 |
+
## Intended uses & limitations
|
59 |
+
|
60 |
+
More information needed
|
61 |
+
|
62 |
+
## Training and evaluation data
|
63 |
+
|
64 |
+
More information needed
|
65 |
+
|
66 |
+
## Training procedure
|
67 |
+
|
68 |
+
### Training hyperparameters
|
69 |
+
|
70 |
+
The following hyperparameters were used during training:
|
71 |
+
- learning_rate: 5e-05
|
72 |
+
- train_batch_size: 16
|
73 |
+
- eval_batch_size: 16
|
74 |
+
- seed: 42
|
75 |
+
- gradient_accumulation_steps: 4
|
76 |
+
- total_train_batch_size: 64
|
77 |
+
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
|
78 |
+
- lr_scheduler_type: linear
|
79 |
+
- lr_scheduler_warmup_ratio: 0.1
|
80 |
+
- num_epochs: 20
|
81 |
+
|
82 |
+
### Training results
|
83 |
+
|
84 |
+
| Training Loss | Epoch | Step | Validation Loss | Accuracy | Recall | Precision | F1 | Roc Auc |
|
85 |
+
|:-------------:|:-----:|:-----:|:---------------:|:--------:|:------:|:---------:|:------:|:-------:|
|
86 |
+
| 0.1087 | 1.0 | 1377 | 0.0767 | 0.9720 | 0.9020 | 0.9667 | 0.9332 | 0.9965 |
|
87 |
+
| 0.0647 | 2.0 | 2755 | 0.0408 | 0.9847 | 0.9458 | 0.9831 | 0.9641 | 0.9990 |
|
88 |
+
| 0.0295 | 3.0 | 4132 | 0.0499 | 0.9862 | 0.9947 | 0.9449 | 0.9692 | 0.9995 |
|
89 |
+
| 0.0537 | 4.0 | 5510 | 0.0201 | 0.9927 | 0.9736 | 0.9928 | 0.9831 | 0.9998 |
|
90 |
+
| 0.0253 | 5.0 | 6887 | 0.0115 | 0.9958 | 0.9826 | 0.9979 | 0.9902 | 0.9999 |
|
91 |
+
| 0.0069 | 6.0 | 8265 | 0.0058 | 0.9979 | 0.9928 | 0.9974 | 0.9951 | 1.0000 |
|
92 |
+
| 0.0226 | 7.0 | 9642 | 0.0113 | 0.9960 | 0.9823 | 0.9994 | 0.9908 | 0.9999 |
|
93 |
+
| 0.0096 | 8.0 | 11020 | 0.0147 | 0.9957 | 0.9806 | 0.9995 | 0.9900 | 0.9999 |
|
94 |
+
| 0.0301 | 9.0 | 12397 | 0.0071 | 0.9972 | 0.9878 | 0.9993 | 0.9935 | 1.0000 |
|
95 |
+
| 0.0133 | 10.0 | 13775 | 0.0055 | 0.9978 | 0.9901 | 0.9998 | 0.9949 | 1.0000 |
|
96 |
+
| 0.0074 | 11.0 | 15152 | 0.0049 | 0.9980 | 0.9915 | 0.9992 | 0.9953 | 1.0000 |
|
97 |
+
| 0.0036 | 12.0 | 16530 | 0.0034 | 0.9983 | 0.9935 | 0.9987 | 0.9961 | 1.0000 |
|
98 |
+
| 0.0039 | 13.0 | 17907 | 0.0037 | 0.9982 | 0.9926 | 0.9993 | 0.9959 | 1.0000 |
|
99 |
+
| 0.0106 | 14.0 | 19285 | 0.0033 | 0.9983 | 0.9931 | 0.9992 | 0.9961 | 1.0000 |
|
100 |
+
| 0.0033 | 15.0 | 20662 | 0.0033 | 0.9984 | 0.9926 | 0.9998 | 0.9962 | 1.0000 |
|
101 |
+
| 0.0214 | 16.0 | 22040 | 0.0032 | 0.9984 | 0.9931 | 0.9994 | 0.9963 | 1.0000 |
|
102 |
+
| 0.0041 | 17.0 | 23417 | 0.0032 | 0.9984 | 0.9926 | 0.9998 | 0.9962 | 1.0000 |
|
103 |
+
| 0.0101 | 18.0 | 24795 | 0.0031 | 0.9984 | 0.9926 | 0.9999 | 0.9963 | 1.0000 |
|
104 |
+
| 0.0023 | 19.0 | 26172 | 0.0031 | 0.9984 | 0.9928 | 0.9997 | 0.9963 | 1.0000 |
|
105 |
+
| 0.002 | 19.99 | 27540 | 0.0031 | 0.9984 | 0.9926 | 0.9999 | 0.9963 | 1.0000 |
|
106 |
+
|
107 |
+
|
108 |
+
### Framework versions
|
109 |
+
|
110 |
+
- Transformers 4.39.2
|
111 |
+
- Pytorch 2.2.2
|
112 |
+
- Datasets 2.18.0
|
113 |
+
- Tokenizers 0.15.2
|
model.safetensors
CHANGED
@@ -1,3 +1,3 @@
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
-
oid sha256:
|
3 |
size 110342832
|
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:1aa6cf65ee609bc67bdfb6bac2556ff7101fc60eae39215149d455e14dbd2159
|
3 |
size 110342832
|