hchcsuim commited on
Commit
1cf826c
1 Parent(s): 09eaf10

Model save

Browse files
Files changed (2) hide show
  1. README.md +113 -0
  2. model.safetensors +1 -1
README.md ADDED
@@ -0,0 +1,113 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ license: apache-2.0
3
+ base_model: microsoft/swin-tiny-patch4-window7-224
4
+ tags:
5
+ - generated_from_trainer
6
+ datasets:
7
+ - imagefolder
8
+ metrics:
9
+ - accuracy
10
+ - recall
11
+ - precision
12
+ - f1
13
+ model-index:
14
+ - name: FFPP-Raw_1FPS_faces-expand-0-aligned-normalize-image-mean-std
15
+ results:
16
+ - task:
17
+ name: Image Classification
18
+ type: image-classification
19
+ dataset:
20
+ name: imagefolder
21
+ type: imagefolder
22
+ config: default
23
+ split: test
24
+ args: default
25
+ metrics:
26
+ - name: Accuracy
27
+ type: accuracy
28
+ value: 0.99837772836593
29
+ - name: Recall
30
+ type: recall
31
+ value: 0.9926393819168928
32
+ - name: Precision
33
+ type: precision
34
+ value: 0.9998948309407373
35
+ - name: F1
36
+ type: f1
37
+ value: 0.9962538967332931
38
+ ---
39
+
40
+ <!-- This model card has been generated automatically according to the information the Trainer had access to. You
41
+ should probably proofread and complete it, then remove this comment. -->
42
+
43
+ # FFPP-Raw_1FPS_faces-expand-0-aligned-normalize-image-mean-std
44
+
45
+ This model is a fine-tuned version of [microsoft/swin-tiny-patch4-window7-224](https://huggingface.co/microsoft/swin-tiny-patch4-window7-224) on the imagefolder dataset.
46
+ It achieves the following results on the evaluation set:
47
+ - Loss: 0.0031
48
+ - Accuracy: 0.9984
49
+ - Recall: 0.9926
50
+ - Precision: 0.9999
51
+ - F1: 0.9963
52
+ - Roc Auc: 1.0000
53
+
54
+ ## Model description
55
+
56
+ More information needed
57
+
58
+ ## Intended uses & limitations
59
+
60
+ More information needed
61
+
62
+ ## Training and evaluation data
63
+
64
+ More information needed
65
+
66
+ ## Training procedure
67
+
68
+ ### Training hyperparameters
69
+
70
+ The following hyperparameters were used during training:
71
+ - learning_rate: 5e-05
72
+ - train_batch_size: 16
73
+ - eval_batch_size: 16
74
+ - seed: 42
75
+ - gradient_accumulation_steps: 4
76
+ - total_train_batch_size: 64
77
+ - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
78
+ - lr_scheduler_type: linear
79
+ - lr_scheduler_warmup_ratio: 0.1
80
+ - num_epochs: 20
81
+
82
+ ### Training results
83
+
84
+ | Training Loss | Epoch | Step | Validation Loss | Accuracy | Recall | Precision | F1 | Roc Auc |
85
+ |:-------------:|:-----:|:-----:|:---------------:|:--------:|:------:|:---------:|:------:|:-------:|
86
+ | 0.1087 | 1.0 | 1377 | 0.0767 | 0.9720 | 0.9020 | 0.9667 | 0.9332 | 0.9965 |
87
+ | 0.0647 | 2.0 | 2755 | 0.0408 | 0.9847 | 0.9458 | 0.9831 | 0.9641 | 0.9990 |
88
+ | 0.0295 | 3.0 | 4132 | 0.0499 | 0.9862 | 0.9947 | 0.9449 | 0.9692 | 0.9995 |
89
+ | 0.0537 | 4.0 | 5510 | 0.0201 | 0.9927 | 0.9736 | 0.9928 | 0.9831 | 0.9998 |
90
+ | 0.0253 | 5.0 | 6887 | 0.0115 | 0.9958 | 0.9826 | 0.9979 | 0.9902 | 0.9999 |
91
+ | 0.0069 | 6.0 | 8265 | 0.0058 | 0.9979 | 0.9928 | 0.9974 | 0.9951 | 1.0000 |
92
+ | 0.0226 | 7.0 | 9642 | 0.0113 | 0.9960 | 0.9823 | 0.9994 | 0.9908 | 0.9999 |
93
+ | 0.0096 | 8.0 | 11020 | 0.0147 | 0.9957 | 0.9806 | 0.9995 | 0.9900 | 0.9999 |
94
+ | 0.0301 | 9.0 | 12397 | 0.0071 | 0.9972 | 0.9878 | 0.9993 | 0.9935 | 1.0000 |
95
+ | 0.0133 | 10.0 | 13775 | 0.0055 | 0.9978 | 0.9901 | 0.9998 | 0.9949 | 1.0000 |
96
+ | 0.0074 | 11.0 | 15152 | 0.0049 | 0.9980 | 0.9915 | 0.9992 | 0.9953 | 1.0000 |
97
+ | 0.0036 | 12.0 | 16530 | 0.0034 | 0.9983 | 0.9935 | 0.9987 | 0.9961 | 1.0000 |
98
+ | 0.0039 | 13.0 | 17907 | 0.0037 | 0.9982 | 0.9926 | 0.9993 | 0.9959 | 1.0000 |
99
+ | 0.0106 | 14.0 | 19285 | 0.0033 | 0.9983 | 0.9931 | 0.9992 | 0.9961 | 1.0000 |
100
+ | 0.0033 | 15.0 | 20662 | 0.0033 | 0.9984 | 0.9926 | 0.9998 | 0.9962 | 1.0000 |
101
+ | 0.0214 | 16.0 | 22040 | 0.0032 | 0.9984 | 0.9931 | 0.9994 | 0.9963 | 1.0000 |
102
+ | 0.0041 | 17.0 | 23417 | 0.0032 | 0.9984 | 0.9926 | 0.9998 | 0.9962 | 1.0000 |
103
+ | 0.0101 | 18.0 | 24795 | 0.0031 | 0.9984 | 0.9926 | 0.9999 | 0.9963 | 1.0000 |
104
+ | 0.0023 | 19.0 | 26172 | 0.0031 | 0.9984 | 0.9928 | 0.9997 | 0.9963 | 1.0000 |
105
+ | 0.002 | 19.99 | 27540 | 0.0031 | 0.9984 | 0.9926 | 0.9999 | 0.9963 | 1.0000 |
106
+
107
+
108
+ ### Framework versions
109
+
110
+ - Transformers 4.39.2
111
+ - Pytorch 2.2.2
112
+ - Datasets 2.18.0
113
+ - Tokenizers 0.15.2
model.safetensors CHANGED
@@ -1,3 +1,3 @@
1
  version https://git-lfs.github.com/spec/v1
2
- oid sha256:8c6e3838ad9b076b3498e93a31000cc0eae59db1bec3774a38a1d7424b4d5618
3
  size 110342832
 
1
  version https://git-lfs.github.com/spec/v1
2
+ oid sha256:1aa6cf65ee609bc67bdfb6bac2556ff7101fc60eae39215149d455e14dbd2159
3
  size 110342832