|
{ |
|
"results": { |
|
"Open LLM Leaderboard": { |
|
"bleu_diff,none": 3.006407428437984, |
|
"bleu_diff_stderr,none": 0.6902983955128965, |
|
"bleu_max,none": 22.15536379157621, |
|
"bleu_max_stderr,none": 0.7500703499499018, |
|
"rouge2_max,none": 33.70863440140025, |
|
"rouge2_max_stderr,none": 0.9588688279748141, |
|
"rougeL_diff,none": 3.7826634155902985, |
|
"rougeL_diff_stderr,none": 0.958164425989176, |
|
"exact_match,strict-match": 0.6277482941622441, |
|
"exact_match_stderr,strict-match": 0.013315375362565036, |
|
"acc_norm,none": 0.8359193864811842, |
|
"acc_norm_stderr,none": 0.00345585439013916, |
|
"exact_match,flexible-extract": 0.6315390447308568, |
|
"exact_match_stderr,flexible-extract": 0.013287342651674573, |
|
"rouge1_acc,none": 0.5410036719706243, |
|
"rouge1_acc_stderr,none": 0.017444544447661182, |
|
"rouge1_max,none": 47.813085751155874, |
|
"rouge1_max_stderr,none": 0.8351008973483007, |
|
"rouge2_acc,none": 0.4541003671970624, |
|
"rouge2_acc_stderr,none": 0.017429593091323504, |
|
"bleu_acc,none": 0.5091799265605875, |
|
"bleu_acc_stderr,none": 0.01750055072481974, |
|
"rougeL_max,none": 44.3329487904666, |
|
"rougeL_max_stderr,none": 0.8588505055776223, |
|
"rouge2_diff,none": 3.5225531232870635, |
|
"rouge2_diff_stderr,none": 1.0505034205658943, |
|
"rouge1_diff,none": 4.221115729669922, |
|
"rouge1_diff_stderr,none": 0.9451610499576943, |
|
"acc,none": 0.6514042969190568, |
|
"acc_stderr,none": 0.0027599234131481932, |
|
"rougeL_acc,none": 0.5128518971848225, |
|
"rougeL_acc_stderr,none": 0.017497717944299843, |
|
"alias": "Open LLM Leaderboard" |
|
}, |
|
"arc_challenge": { |
|
"acc,none": 0.6382252559726962, |
|
"acc_stderr,none": 0.014041957945038085, |
|
"acc_norm,none": 0.6689419795221843, |
|
"acc_norm_stderr,none": 0.013752062419817841, |
|
"alias": " - arc_challenge" |
|
}, |
|
"gsm8k": { |
|
"exact_match,strict-match": 0.6277482941622441, |
|
"exact_match_stderr,strict-match": 0.013315375362565036, |
|
"exact_match,flexible-extract": 0.6315390447308568, |
|
"exact_match_stderr,flexible-extract": 0.013287342651674573, |
|
"alias": " - gsm8k" |
|
}, |
|
"hellaswag": { |
|
"acc,none": 0.6691894045010954, |
|
"acc_stderr,none": 0.00469543410395854, |
|
"acc_norm,none": 0.8554072893845848, |
|
"acc_norm_stderr,none": 0.0035097096477919466, |
|
"alias": " - hellaswag" |
|
}, |
|
"mmlu": { |
|
"acc,none": 0.6364477994587665, |
|
"acc_stderr,none": 0.0038271694585367516, |
|
"alias": " - mmlu" |
|
}, |
|
"mmlu_humanities": { |
|
"alias": " - humanities", |
|
"acc,none": 0.5895855472901169, |
|
"acc_stderr,none": 0.006760272274548804 |
|
}, |
|
"mmlu_formal_logic": { |
|
"alias": " - formal_logic", |
|
"acc,none": 0.4444444444444444, |
|
"acc_stderr,none": 0.04444444444444449 |
|
}, |
|
"mmlu_high_school_european_history": { |
|
"alias": " - high_school_european_history", |
|
"acc,none": 0.7696969696969697, |
|
"acc_stderr,none": 0.0328766675860349 |
|
}, |
|
"mmlu_high_school_us_history": { |
|
"alias": " - high_school_us_history", |
|
"acc,none": 0.8333333333333334, |
|
"acc_stderr,none": 0.026156867523931055 |
|
}, |
|
"mmlu_high_school_world_history": { |
|
"alias": " - high_school_world_history", |
|
"acc,none": 0.8185654008438819, |
|
"acc_stderr,none": 0.02508596114457965 |
|
}, |
|
"mmlu_international_law": { |
|
"alias": " - international_law", |
|
"acc,none": 0.7933884297520661, |
|
"acc_stderr,none": 0.03695980128098823 |
|
}, |
|
"mmlu_jurisprudence": { |
|
"alias": " - jurisprudence", |
|
"acc,none": 0.7962962962962963, |
|
"acc_stderr,none": 0.03893542518824847 |
|
}, |
|
"mmlu_logical_fallacies": { |
|
"alias": " - logical_fallacies", |
|
"acc,none": 0.7668711656441718, |
|
"acc_stderr,none": 0.033220157957767414 |
|
}, |
|
"mmlu_moral_disputes": { |
|
"alias": " - moral_disputes", |
|
"acc,none": 0.7138728323699421, |
|
"acc_stderr,none": 0.024332146779134128 |
|
}, |
|
"mmlu_moral_scenarios": { |
|
"alias": " - moral_scenarios", |
|
"acc,none": 0.39664804469273746, |
|
"acc_stderr,none": 0.01636135476982247 |
|
}, |
|
"mmlu_philosophy": { |
|
"alias": " - philosophy", |
|
"acc,none": 0.6913183279742765, |
|
"acc_stderr,none": 0.02623696588115326 |
|
}, |
|
"mmlu_prehistory": { |
|
"alias": " - prehistory", |
|
"acc,none": 0.7345679012345679, |
|
"acc_stderr,none": 0.02456922360046085 |
|
}, |
|
"mmlu_professional_law": { |
|
"alias": " - professional_law", |
|
"acc,none": 0.46936114732724904, |
|
"acc_stderr,none": 0.012746237711716634 |
|
}, |
|
"mmlu_world_religions": { |
|
"alias": " - world_religions", |
|
"acc,none": 0.847953216374269, |
|
"acc_stderr,none": 0.02753912288906145 |
|
}, |
|
"mmlu_other": { |
|
"alias": " - other", |
|
"acc,none": 0.7055037013196009, |
|
"acc_stderr,none": 0.007845586852292294 |
|
}, |
|
"mmlu_business_ethics": { |
|
"alias": " - business_ethics", |
|
"acc,none": 0.58, |
|
"acc_stderr,none": 0.049604496374885836 |
|
}, |
|
"mmlu_clinical_knowledge": { |
|
"alias": " - clinical_knowledge", |
|
"acc,none": 0.7018867924528301, |
|
"acc_stderr,none": 0.028152837942493868 |
|
}, |
|
"mmlu_college_medicine": { |
|
"alias": " - college_medicine", |
|
"acc,none": 0.6647398843930635, |
|
"acc_stderr,none": 0.03599586301247077 |
|
}, |
|
"mmlu_global_facts": { |
|
"alias": " - global_facts", |
|
"acc,none": 0.38, |
|
"acc_stderr,none": 0.04878317312145632 |
|
}, |
|
"mmlu_human_aging": { |
|
"alias": " - human_aging", |
|
"acc,none": 0.6771300448430493, |
|
"acc_stderr,none": 0.031381476375755 |
|
}, |
|
"mmlu_management": { |
|
"alias": " - management", |
|
"acc,none": 0.7864077669902912, |
|
"acc_stderr,none": 0.04058042015646034 |
|
}, |
|
"mmlu_marketing": { |
|
"alias": " - marketing", |
|
"acc,none": 0.8803418803418803, |
|
"acc_stderr,none": 0.021262719400406964 |
|
}, |
|
"mmlu_medical_genetics": { |
|
"alias": " - medical_genetics", |
|
"acc,none": 0.71, |
|
"acc_stderr,none": 0.045604802157206845 |
|
}, |
|
"mmlu_miscellaneous": { |
|
"alias": " - miscellaneous", |
|
"acc,none": 0.8326947637292464, |
|
"acc_stderr,none": 0.01334732720292033 |
|
}, |
|
"mmlu_nutrition": { |
|
"alias": " - nutrition", |
|
"acc,none": 0.7352941176470589, |
|
"acc_stderr,none": 0.025261691219729494 |
|
}, |
|
"mmlu_professional_accounting": { |
|
"alias": " - professional_accounting", |
|
"acc,none": 0.46808510638297873, |
|
"acc_stderr,none": 0.02976667507587387 |
|
}, |
|
"mmlu_professional_medicine": { |
|
"alias": " - professional_medicine", |
|
"acc,none": 0.6875, |
|
"acc_stderr,none": 0.02815637344037142 |
|
}, |
|
"mmlu_virology": { |
|
"alias": " - virology", |
|
"acc,none": 0.5421686746987951, |
|
"acc_stderr,none": 0.038786267710023595 |
|
}, |
|
"mmlu_social_sciences": { |
|
"alias": " - social_sciences", |
|
"acc,none": 0.7432564185895353, |
|
"acc_stderr,none": 0.007701333272557918 |
|
}, |
|
"mmlu_econometrics": { |
|
"alias": " - econometrics", |
|
"acc,none": 0.5087719298245614, |
|
"acc_stderr,none": 0.04702880432049615 |
|
}, |
|
"mmlu_high_school_geography": { |
|
"alias": " - high_school_geography", |
|
"acc,none": 0.8181818181818182, |
|
"acc_stderr,none": 0.027479603010538804 |
|
}, |
|
"mmlu_high_school_government_and_politics": { |
|
"alias": " - high_school_government_and_politics", |
|
"acc,none": 0.9015544041450777, |
|
"acc_stderr,none": 0.021500249576033463 |
|
}, |
|
"mmlu_high_school_macroeconomics": { |
|
"alias": " - high_school_macroeconomics", |
|
"acc,none": 0.658974358974359, |
|
"acc_stderr,none": 0.02403548967633508 |
|
}, |
|
"mmlu_high_school_microeconomics": { |
|
"alias": " - high_school_microeconomics", |
|
"acc,none": 0.6638655462184874, |
|
"acc_stderr,none": 0.03068473711513537 |
|
}, |
|
"mmlu_high_school_psychology": { |
|
"alias": " - high_school_psychology", |
|
"acc,none": 0.8311926605504587, |
|
"acc_stderr,none": 0.016060056268530368 |
|
}, |
|
"mmlu_human_sexuality": { |
|
"alias": " - human_sexuality", |
|
"acc,none": 0.7862595419847328, |
|
"acc_stderr,none": 0.0359546161177469 |
|
}, |
|
"mmlu_professional_psychology": { |
|
"alias": " - professional_psychology", |
|
"acc,none": 0.6699346405228758, |
|
"acc_stderr,none": 0.01902372616072455 |
|
}, |
|
"mmlu_public_relations": { |
|
"alias": " - public_relations", |
|
"acc,none": 0.6909090909090909, |
|
"acc_stderr,none": 0.044262946482000985 |
|
}, |
|
"mmlu_security_studies": { |
|
"alias": " - security_studies", |
|
"acc,none": 0.7387755102040816, |
|
"acc_stderr,none": 0.02812342933514278 |
|
}, |
|
"mmlu_sociology": { |
|
"alias": " - sociology", |
|
"acc,none": 0.8407960199004975, |
|
"acc_stderr,none": 0.02587064676616913 |
|
}, |
|
"mmlu_us_foreign_policy": { |
|
"alias": " - us_foreign_policy", |
|
"acc,none": 0.86, |
|
"acc_stderr,none": 0.03487350880197768 |
|
}, |
|
"mmlu_stem": { |
|
"alias": " - stem", |
|
"acc,none": 0.5340945131620679, |
|
"acc_stderr,none": 0.008514164103258936 |
|
}, |
|
"mmlu_abstract_algebra": { |
|
"alias": " - abstract_algebra", |
|
"acc,none": 0.38, |
|
"acc_stderr,none": 0.048783173121456316 |
|
}, |
|
"mmlu_anatomy": { |
|
"alias": " - anatomy", |
|
"acc,none": 0.6222222222222222, |
|
"acc_stderr,none": 0.04188307537595853 |
|
}, |
|
"mmlu_astronomy": { |
|
"alias": " - astronomy", |
|
"acc,none": 0.6907894736842105, |
|
"acc_stderr,none": 0.037610708698674805 |
|
}, |
|
"mmlu_college_biology": { |
|
"alias": " - college_biology", |
|
"acc,none": 0.7569444444444444, |
|
"acc_stderr,none": 0.03586879280080341 |
|
}, |
|
"mmlu_college_chemistry": { |
|
"alias": " - college_chemistry", |
|
"acc,none": 0.42, |
|
"acc_stderr,none": 0.049604496374885836 |
|
}, |
|
"mmlu_college_computer_science": { |
|
"alias": " - college_computer_science", |
|
"acc,none": 0.54, |
|
"acc_stderr,none": 0.05009082659620332 |
|
}, |
|
"mmlu_college_mathematics": { |
|
"alias": " - college_mathematics", |
|
"acc,none": 0.32, |
|
"acc_stderr,none": 0.04688261722621505 |
|
}, |
|
"mmlu_college_physics": { |
|
"alias": " - college_physics", |
|
"acc,none": 0.4411764705882353, |
|
"acc_stderr,none": 0.04940635630605659 |
|
}, |
|
"mmlu_computer_security": { |
|
"alias": " - computer_security", |
|
"acc,none": 0.79, |
|
"acc_stderr,none": 0.040936018074033256 |
|
}, |
|
"mmlu_conceptual_physics": { |
|
"alias": " - conceptual_physics", |
|
"acc,none": 0.574468085106383, |
|
"acc_stderr,none": 0.03232146916224468 |
|
}, |
|
"mmlu_electrical_engineering": { |
|
"alias": " - electrical_engineering", |
|
"acc,none": 0.5862068965517241, |
|
"acc_stderr,none": 0.04104269211806232 |
|
}, |
|
"mmlu_elementary_mathematics": { |
|
"alias": " - elementary_mathematics", |
|
"acc,none": 0.3915343915343915, |
|
"acc_stderr,none": 0.02513809138885111 |
|
}, |
|
"mmlu_high_school_biology": { |
|
"alias": " - high_school_biology", |
|
"acc,none": 0.7645161290322581, |
|
"acc_stderr,none": 0.02413763242933771 |
|
}, |
|
"mmlu_high_school_chemistry": { |
|
"alias": " - high_school_chemistry", |
|
"acc,none": 0.5172413793103449, |
|
"acc_stderr,none": 0.035158955511656986 |
|
}, |
|
"mmlu_high_school_computer_science": { |
|
"alias": " - high_school_computer_science", |
|
"acc,none": 0.71, |
|
"acc_stderr,none": 0.045604802157206845 |
|
}, |
|
"mmlu_high_school_mathematics": { |
|
"alias": " - high_school_mathematics", |
|
"acc,none": 0.3592592592592593, |
|
"acc_stderr,none": 0.029252905927251972 |
|
}, |
|
"mmlu_high_school_physics": { |
|
"alias": " - high_school_physics", |
|
"acc,none": 0.37748344370860926, |
|
"acc_stderr,none": 0.0395802723112157 |
|
}, |
|
"mmlu_high_school_statistics": { |
|
"alias": " - high_school_statistics", |
|
"acc,none": 0.49074074074074076, |
|
"acc_stderr,none": 0.034093869469927006 |
|
}, |
|
"mmlu_machine_learning": { |
|
"alias": " - machine_learning", |
|
"acc,none": 0.49107142857142855, |
|
"acc_stderr,none": 0.04745033255489123 |
|
}, |
|
"truthfulqa": { |
|
"bleu_diff,none": 3.006407428437984, |
|
"bleu_diff_stderr,none": 0.6902983955128965, |
|
"bleu_max,none": 22.15536379157621, |
|
"bleu_max_stderr,none": 0.7500703499499018, |
|
"rouge2_max,none": 33.70863440140025, |
|
"rouge2_max_stderr,none": 0.9588688279748141, |
|
"rougeL_acc,none": 0.5128518971848225, |
|
"rougeL_acc_stderr,none": 0.017497717944299843, |
|
"rougeL_diff,none": 3.7826634155902985, |
|
"rougeL_diff_stderr,none": 0.958164425989176, |
|
"rouge1_acc,none": 0.5410036719706243, |
|
"rouge1_acc_stderr,none": 0.017444544447661182, |
|
"rouge1_max,none": 47.813085751155874, |
|
"rouge1_max_stderr,none": 0.8351008973483007, |
|
"rouge2_acc,none": 0.4541003671970624, |
|
"rouge2_acc_stderr,none": 0.017429593091323504, |
|
"bleu_acc,none": 0.5091799265605875, |
|
"bleu_acc_stderr,none": 0.01750055072481974, |
|
"rouge2_diff,none": 3.5225531232870635, |
|
"rouge2_diff_stderr,none": 1.0505034205658943, |
|
"rouge1_diff,none": 4.221115729669922, |
|
"rouge1_diff_stderr,none": 0.9451610499576943, |
|
"acc,none": 0.5182294709510535, |
|
"acc_stderr,none": 0.011594047810301133, |
|
"rougeL_max,none": 44.3329487904666, |
|
"rougeL_max_stderr,none": 0.8588505055776223, |
|
"alias": " - truthfulqa" |
|
}, |
|
"truthfulqa_gen": { |
|
"bleu_max,none": 22.15536379157621, |
|
"bleu_max_stderr,none": 0.7500703499499018, |
|
"bleu_acc,none": 0.5091799265605875, |
|
"bleu_acc_stderr,none": 0.01750055072481974, |
|
"bleu_diff,none": 3.006407428437984, |
|
"bleu_diff_stderr,none": 0.6902983955128965, |
|
"rouge1_max,none": 47.813085751155874, |
|
"rouge1_max_stderr,none": 0.8351008973483007, |
|
"rouge1_acc,none": 0.5410036719706243, |
|
"rouge1_acc_stderr,none": 0.01744454444766118, |
|
"rouge1_diff,none": 4.221115729669922, |
|
"rouge1_diff_stderr,none": 0.9451610499576943, |
|
"rouge2_max,none": 33.70863440140025, |
|
"rouge2_max_stderr,none": 0.9588688279748141, |
|
"rouge2_acc,none": 0.4541003671970624, |
|
"rouge2_acc_stderr,none": 0.017429593091323504, |
|
"rouge2_diff,none": 3.5225531232870635, |
|
"rouge2_diff_stderr,none": 1.0505034205658943, |
|
"rougeL_max,none": 44.3329487904666, |
|
"rougeL_max_stderr,none": 0.8588505055776224, |
|
"rougeL_acc,none": 0.5128518971848225, |
|
"rougeL_acc_stderr,none": 0.017497717944299843, |
|
"rougeL_diff,none": 3.7826634155902985, |
|
"rougeL_diff_stderr,none": 0.958164425989176, |
|
"alias": " - truthfulqa_gen" |
|
}, |
|
"truthfulqa_mc1": { |
|
"acc,none": 0.42962056303549573, |
|
"acc_stderr,none": 0.017329234580409095, |
|
"alias": " - truthfulqa_mc1" |
|
}, |
|
"truthfulqa_mc2": { |
|
"acc,none": 0.6068383788666114, |
|
"acc_stderr,none": 0.01540731668290581, |
|
"alias": " - truthfulqa_mc2" |
|
}, |
|
"winogrande": { |
|
"acc,none": 0.7742699289660616, |
|
"acc_stderr,none": 0.011749626260902557, |
|
"alias": " - winogrande" |
|
}, |
|
"eq_bench": { |
|
"eqbench,none": 71.54290317887124, |
|
"eqbench_stderr,none": 2.0457017558365664, |
|
"percent_parseable,none": 100.0, |
|
"percent_parseable_stderr,none": 0.0, |
|
"alias": "eq_bench" |
|
} |
|
}, |
|
"groups": { |
|
"Open LLM Leaderboard": { |
|
"bleu_diff,none": 3.006407428437984, |
|
"bleu_diff_stderr,none": 0.6902983955128965, |
|
"bleu_max,none": 22.15536379157621, |
|
"bleu_max_stderr,none": 0.7500703499499018, |
|
"rouge2_max,none": 33.70863440140025, |
|
"rouge2_max_stderr,none": 0.9588688279748141, |
|
"rougeL_diff,none": 3.7826634155902985, |
|
"rougeL_diff_stderr,none": 0.958164425989176, |
|
"exact_match,strict-match": 0.6277482941622441, |
|
"exact_match_stderr,strict-match": 0.013315375362565036, |
|
"acc_norm,none": 0.8359193864811842, |
|
"acc_norm_stderr,none": 0.00345585439013916, |
|
"exact_match,flexible-extract": 0.6315390447308568, |
|
"exact_match_stderr,flexible-extract": 0.013287342651674573, |
|
"rouge1_acc,none": 0.5410036719706243, |
|
"rouge1_acc_stderr,none": 0.017444544447661182, |
|
"rouge1_max,none": 47.813085751155874, |
|
"rouge1_max_stderr,none": 0.8351008973483007, |
|
"rouge2_acc,none": 0.4541003671970624, |
|
"rouge2_acc_stderr,none": 0.017429593091323504, |
|
"bleu_acc,none": 0.5091799265605875, |
|
"bleu_acc_stderr,none": 0.01750055072481974, |
|
"rougeL_max,none": 44.3329487904666, |
|
"rougeL_max_stderr,none": 0.8588505055776223, |
|
"rouge2_diff,none": 3.5225531232870635, |
|
"rouge2_diff_stderr,none": 1.0505034205658943, |
|
"rouge1_diff,none": 4.221115729669922, |
|
"rouge1_diff_stderr,none": 0.9451610499576943, |
|
"acc,none": 0.6514042969190568, |
|
"acc_stderr,none": 0.0027599234131481932, |
|
"rougeL_acc,none": 0.5128518971848225, |
|
"rougeL_acc_stderr,none": 0.017497717944299843, |
|
"alias": "Open LLM Leaderboard" |
|
}, |
|
"mmlu": { |
|
"acc,none": 0.6364477994587665, |
|
"acc_stderr,none": 0.0038271694585367516, |
|
"alias": " - mmlu" |
|
}, |
|
"mmlu_humanities": { |
|
"alias": " - humanities", |
|
"acc,none": 0.5895855472901169, |
|
"acc_stderr,none": 0.006760272274548804 |
|
}, |
|
"mmlu_other": { |
|
"alias": " - other", |
|
"acc,none": 0.7055037013196009, |
|
"acc_stderr,none": 0.007845586852292294 |
|
}, |
|
"mmlu_social_sciences": { |
|
"alias": " - social_sciences", |
|
"acc,none": 0.7432564185895353, |
|
"acc_stderr,none": 0.007701333272557918 |
|
}, |
|
"mmlu_stem": { |
|
"alias": " - stem", |
|
"acc,none": 0.5340945131620679, |
|
"acc_stderr,none": 0.008514164103258936 |
|
}, |
|
"truthfulqa": { |
|
"bleu_diff,none": 3.006407428437984, |
|
"bleu_diff_stderr,none": 0.6902983955128965, |
|
"bleu_max,none": 22.15536379157621, |
|
"bleu_max_stderr,none": 0.7500703499499018, |
|
"rouge2_max,none": 33.70863440140025, |
|
"rouge2_max_stderr,none": 0.9588688279748141, |
|
"rougeL_acc,none": 0.5128518971848225, |
|
"rougeL_acc_stderr,none": 0.017497717944299843, |
|
"rougeL_diff,none": 3.7826634155902985, |
|
"rougeL_diff_stderr,none": 0.958164425989176, |
|
"rouge1_acc,none": 0.5410036719706243, |
|
"rouge1_acc_stderr,none": 0.017444544447661182, |
|
"rouge1_max,none": 47.813085751155874, |
|
"rouge1_max_stderr,none": 0.8351008973483007, |
|
"rouge2_acc,none": 0.4541003671970624, |
|
"rouge2_acc_stderr,none": 0.017429593091323504, |
|
"bleu_acc,none": 0.5091799265605875, |
|
"bleu_acc_stderr,none": 0.01750055072481974, |
|
"rouge2_diff,none": 3.5225531232870635, |
|
"rouge2_diff_stderr,none": 1.0505034205658943, |
|
"rouge1_diff,none": 4.221115729669922, |
|
"rouge1_diff_stderr,none": 0.9451610499576943, |
|
"acc,none": 0.5182294709510535, |
|
"acc_stderr,none": 0.011594047810301133, |
|
"rougeL_max,none": 44.3329487904666, |
|
"rougeL_max_stderr,none": 0.8588505055776223, |
|
"alias": " - truthfulqa" |
|
} |
|
}, |
|
"group_subtasks": { |
|
"eq_bench": [], |
|
"truthfulqa": [ |
|
"truthfulqa_gen", |
|
"truthfulqa_mc1", |
|
"truthfulqa_mc2" |
|
], |
|
"mmlu_stem": [ |
|
"mmlu_high_school_chemistry", |
|
"mmlu_college_physics", |
|
"mmlu_college_mathematics", |
|
"mmlu_astronomy", |
|
"mmlu_high_school_physics", |
|
"mmlu_computer_security", |
|
"mmlu_elementary_mathematics", |
|
"mmlu_electrical_engineering", |
|
"mmlu_college_biology", |
|
"mmlu_machine_learning", |
|
"mmlu_high_school_biology", |
|
"mmlu_high_school_mathematics", |
|
"mmlu_anatomy", |
|
"mmlu_high_school_statistics", |
|
"mmlu_college_chemistry", |
|
"mmlu_conceptual_physics", |
|
"mmlu_high_school_computer_science", |
|
"mmlu_college_computer_science", |
|
"mmlu_abstract_algebra" |
|
], |
|
"mmlu_other": [ |
|
"mmlu_professional_medicine", |
|
"mmlu_professional_accounting", |
|
"mmlu_management", |
|
"mmlu_global_facts", |
|
"mmlu_college_medicine", |
|
"mmlu_business_ethics", |
|
"mmlu_nutrition", |
|
"mmlu_medical_genetics", |
|
"mmlu_virology", |
|
"mmlu_human_aging", |
|
"mmlu_clinical_knowledge", |
|
"mmlu_miscellaneous", |
|
"mmlu_marketing" |
|
], |
|
"mmlu_social_sciences": [ |
|
"mmlu_high_school_psychology", |
|
"mmlu_sociology", |
|
"mmlu_high_school_government_and_politics", |
|
"mmlu_public_relations", |
|
"mmlu_high_school_macroeconomics", |
|
"mmlu_high_school_geography", |
|
"mmlu_high_school_microeconomics", |
|
"mmlu_security_studies", |
|
"mmlu_us_foreign_policy", |
|
"mmlu_professional_psychology", |
|
"mmlu_human_sexuality", |
|
"mmlu_econometrics" |
|
], |
|
"mmlu_humanities": [ |
|
"mmlu_high_school_european_history", |
|
"mmlu_formal_logic", |
|
"mmlu_moral_scenarios", |
|
"mmlu_moral_disputes", |
|
"mmlu_world_religions", |
|
"mmlu_high_school_world_history", |
|
"mmlu_logical_fallacies", |
|
"mmlu_international_law", |
|
"mmlu_philosophy", |
|
"mmlu_professional_law", |
|
"mmlu_high_school_us_history", |
|
"mmlu_prehistory", |
|
"mmlu_jurisprudence" |
|
], |
|
"mmlu": [ |
|
"mmlu_humanities", |
|
"mmlu_social_sciences", |
|
"mmlu_other", |
|
"mmlu_stem" |
|
], |
|
"Open LLM Leaderboard": [ |
|
"gsm8k", |
|
"winogrande", |
|
"mmlu", |
|
"truthfulqa", |
|
"hellaswag", |
|
"arc_challenge" |
|
] |
|
}, |
|
"configs": { |
|
"arc_challenge": { |
|
"task": "arc_challenge", |
|
"group": "Open LLM Leaderboard", |
|
"dataset_path": "allenai/ai2_arc", |
|
"dataset_name": "ARC-Challenge", |
|
"training_split": "train", |
|
"validation_split": "validation", |
|
"test_split": "test", |
|
"fewshot_split": "validation", |
|
"doc_to_text": "Question: {{question}}\nAnswer:", |
|
"doc_to_target": "{{choices.label.index(answerKey)}}", |
|
"doc_to_choice": "{{choices.text}}", |
|
"description": "", |
|
"target_delimiter": " ", |
|
"fewshot_delimiter": "\n\n", |
|
"num_fewshot": 25, |
|
"metric_list": [ |
|
{ |
|
"metric": "acc", |
|
"aggregation": "mean", |
|
"higher_is_better": true |
|
}, |
|
{ |
|
"metric": "acc_norm", |
|
"aggregation": "mean", |
|
"higher_is_better": true |
|
} |
|
], |
|
"output_type": "multiple_choice", |
|
"repeats": 1, |
|
"should_decontaminate": true, |
|
"doc_to_decontamination_query": "Question: {{question}}\nAnswer:", |
|
"metadata": { |
|
"version": 1.0 |
|
} |
|
}, |
|
"eq_bench": { |
|
"task": "eq_bench", |
|
"dataset_path": "pbevan11/EQ-Bench", |
|
"validation_split": "validation", |
|
"doc_to_text": "prompt", |
|
"doc_to_target": "reference_answer_fullscale", |
|
"process_results": "def calculate_score_fullscale(docs, results):\n reference = eval(docs[\"reference_answer_fullscale\"])\n user = dict(re.findall(r\"(\\w+):\\s+(\\d+)\", results[0]))\n # First check that the emotions specified in the answer match those in the reference\n if len(user.items()) != 4:\n # print('! Error: 4 emotions were not returned')\n # print(user)\n return {\"eqbench\": 0, \"percent_parseable\": 0}\n emotions_dict = {}\n for emotion, user_emotion_score in user.items():\n for i in range(1, 5):\n if emotion == reference[f\"emotion{i}\"]:\n emotions_dict[emotion] = True\n if len(emotions_dict) != 4:\n print(\"! Error: emotions did not match reference\")\n print(user)\n return {\"eqbench\": 0, \"percent_parseable\": 0}\n\n difference_tally = (\n 0 # Tally of differerence from reference answers for this question\n )\n\n # Iterate over each emotion in the user's answers.\n for emotion, user_emotion_score in user.items():\n # If this emotion is in the reference, calculate the difference between the user's score and the reference score.\n for i in range(1, 5):\n if emotion == reference[f\"emotion{i}\"]:\n d = abs(\n float(user_emotion_score) - float(reference[f\"emotion{i}_score\"])\n )\n # this will be a value between 0 and 10\n if d == 0:\n scaled_difference = 0\n elif d <= 5:\n # S-shaped scaling function\n # https://www.desmos.com/calculator\n # 6.5\\cdot\\ \\frac{1}{\\left(1\\ +\\ e^{\\left(-1.2\\cdot\\left(x-4\\right)\\right)}\\right)}\n scaled_difference = 6.5 * (1 / (1 + math.e ** (-1.2 * (d - 4))))\n\n else:\n scaled_difference = d\n difference_tally += scaled_difference\n\n # Inverting the difference tally so that the closer the answer is to reference, the higher the score.\n # The adjustment constant is chosen such that answering randomly produces a score of zero.\n adjust_const = 0.7477\n final_score = 10 - (difference_tally * adjust_const)\n final_score_percent = final_score * 10\n\n return {\"eqbench\": final_score_percent, \"percent_parseable\": 100}\n", |
|
"description": "", |
|
"target_delimiter": " ", |
|
"fewshot_delimiter": "\n\n", |
|
"num_fewshot": 0, |
|
"metric_list": [ |
|
{ |
|
"metric": "eqbench", |
|
"aggregation": "mean", |
|
"higher_is_better": true |
|
}, |
|
{ |
|
"metric": "percent_parseable", |
|
"aggregation": "mean", |
|
"higher_is_better": true |
|
} |
|
], |
|
"output_type": "generate_until", |
|
"generation_kwargs": { |
|
"do_sample": false, |
|
"temperature": 0.0, |
|
"max_gen_toks": 80, |
|
"until": [ |
|
"\n\n" |
|
] |
|
}, |
|
"repeats": 1, |
|
"should_decontaminate": false, |
|
"metadata": { |
|
"version": 2.1 |
|
} |
|
}, |
|
"gsm8k": { |
|
"task": "gsm8k", |
|
"group": "Open LLM Leaderboard", |
|
"dataset_path": "gsm8k", |
|
"dataset_name": "main", |
|
"training_split": "train", |
|
"test_split": "test", |
|
"fewshot_split": "train", |
|
"doc_to_text": "Question: {{question}}\nAnswer:", |
|
"doc_to_target": "{{answer}}", |
|
"description": "", |
|
"target_delimiter": " ", |
|
"fewshot_delimiter": "\n\n", |
|
"num_fewshot": 5, |
|
"metric_list": [ |
|
{ |
|
"metric": "exact_match", |
|
"aggregation": "mean", |
|
"higher_is_better": true, |
|
"ignore_case": true, |
|
"ignore_punctuation": false, |
|
"regexes_to_ignore": [ |
|
",", |
|
"\\$", |
|
"(?s).*#### ", |
|
"\\.$" |
|
] |
|
} |
|
], |
|
"output_type": "generate_until", |
|
"generation_kwargs": { |
|
"until": [ |
|
"Question:", |
|
"</s>", |
|
"<|im_end|>" |
|
], |
|
"do_sample": false, |
|
"temperature": 0.0 |
|
}, |
|
"repeats": 1, |
|
"filter_list": [ |
|
{ |
|
"name": "strict-match", |
|
"filter": [ |
|
{ |
|
"function": "regex", |
|
"regex_pattern": "#### (\\-?[0-9\\.\\,]+)" |
|
}, |
|
{ |
|
"function": "take_first" |
|
} |
|
] |
|
}, |
|
{ |
|
"name": "flexible-extract", |
|
"filter": [ |
|
{ |
|
"function": "regex", |
|
"group_select": -1, |
|
"regex_pattern": "(-?[$0-9.,]{2,})|(-?[0-9]+)" |
|
}, |
|
{ |
|
"function": "take_first" |
|
} |
|
] |
|
} |
|
], |
|
"should_decontaminate": false, |
|
"metadata": { |
|
"version": 3.0 |
|
} |
|
}, |
|
"hellaswag": { |
|
"task": "hellaswag", |
|
"group": "Open LLM Leaderboard", |
|
"dataset_path": "hellaswag", |
|
"training_split": "train", |
|
"validation_split": "validation", |
|
"fewshot_split": "train", |
|
"process_docs": "def process_docs(dataset: datasets.Dataset) -> datasets.Dataset:\n def _process_doc(doc):\n ctx = doc[\"ctx_a\"] + \" \" + doc[\"ctx_b\"].capitalize()\n out_doc = {\n \"query\": preprocess(doc[\"activity_label\"] + \": \" + ctx),\n \"choices\": [preprocess(ending) for ending in doc[\"endings\"]],\n \"gold\": int(doc[\"label\"]),\n }\n return out_doc\n\n return dataset.map(_process_doc)\n", |
|
"doc_to_text": "{{query}}", |
|
"doc_to_target": "{{label}}", |
|
"doc_to_choice": "choices", |
|
"description": "", |
|
"target_delimiter": " ", |
|
"fewshot_delimiter": "\n\n", |
|
"num_fewshot": 10, |
|
"metric_list": [ |
|
{ |
|
"metric": "acc", |
|
"aggregation": "mean", |
|
"higher_is_better": true |
|
}, |
|
{ |
|
"metric": "acc_norm", |
|
"aggregation": "mean", |
|
"higher_is_better": true |
|
} |
|
], |
|
"output_type": "multiple_choice", |
|
"repeats": 1, |
|
"should_decontaminate": false, |
|
"metadata": { |
|
"version": 1.0 |
|
} |
|
}, |
|
"mmlu_abstract_algebra": { |
|
"task": "mmlu_abstract_algebra", |
|
"task_alias": "abstract_algebra", |
|
"group": "mmlu_stem", |
|
"group_alias": "stem", |
|
"dataset_path": "hails/mmlu_no_train", |
|
"dataset_name": "abstract_algebra", |
|
"dataset_kwargs": { |
|
"trust_remote_code": true |
|
}, |
|
"test_split": "test", |
|
"fewshot_split": "dev", |
|
"doc_to_text": "{{question.strip()}}\nA. {{choices[0]}}\nB. {{choices[1]}}\nC. {{choices[2]}}\nD. {{choices[3]}}\nAnswer:", |
|
"doc_to_target": "answer", |
|
"doc_to_choice": [ |
|
"A", |
|
"B", |
|
"C", |
|
"D" |
|
], |
|
"description": "The following are multiple choice questions (with answers) about abstract algebra.\n\n", |
|
"target_delimiter": " ", |
|
"fewshot_delimiter": "\n\n", |
|
"fewshot_config": { |
|
"sampler": "first_n" |
|
}, |
|
"num_fewshot": 5, |
|
"metric_list": [ |
|
{ |
|
"metric": "acc", |
|
"aggregation": "mean", |
|
"higher_is_better": true |
|
} |
|
], |
|
"output_type": "multiple_choice", |
|
"repeats": 1, |
|
"should_decontaminate": false, |
|
"metadata": { |
|
"version": 0.0 |
|
} |
|
}, |
|
"mmlu_anatomy": { |
|
"task": "mmlu_anatomy", |
|
"task_alias": "anatomy", |
|
"group": "mmlu_stem", |
|
"group_alias": "stem", |
|
"dataset_path": "hails/mmlu_no_train", |
|
"dataset_name": "anatomy", |
|
"dataset_kwargs": { |
|
"trust_remote_code": true |
|
}, |
|
"test_split": "test", |
|
"fewshot_split": "dev", |
|
"doc_to_text": "{{question.strip()}}\nA. {{choices[0]}}\nB. {{choices[1]}}\nC. {{choices[2]}}\nD. {{choices[3]}}\nAnswer:", |
|
"doc_to_target": "answer", |
|
"doc_to_choice": [ |
|
"A", |
|
"B", |
|
"C", |
|
"D" |
|
], |
|
"description": "The following are multiple choice questions (with answers) about anatomy.\n\n", |
|
"target_delimiter": " ", |
|
"fewshot_delimiter": "\n\n", |
|
"fewshot_config": { |
|
"sampler": "first_n" |
|
}, |
|
"num_fewshot": 5, |
|
"metric_list": [ |
|
{ |
|
"metric": "acc", |
|
"aggregation": "mean", |
|
"higher_is_better": true |
|
} |
|
], |
|
"output_type": "multiple_choice", |
|
"repeats": 1, |
|
"should_decontaminate": false, |
|
"metadata": { |
|
"version": 0.0 |
|
} |
|
}, |
|
"mmlu_astronomy": { |
|
"task": "mmlu_astronomy", |
|
"task_alias": "astronomy", |
|
"group": "mmlu_stem", |
|
"group_alias": "stem", |
|
"dataset_path": "hails/mmlu_no_train", |
|
"dataset_name": "astronomy", |
|
"dataset_kwargs": { |
|
"trust_remote_code": true |
|
}, |
|
"test_split": "test", |
|
"fewshot_split": "dev", |
|
"doc_to_text": "{{question.strip()}}\nA. {{choices[0]}}\nB. {{choices[1]}}\nC. {{choices[2]}}\nD. {{choices[3]}}\nAnswer:", |
|
"doc_to_target": "answer", |
|
"doc_to_choice": [ |
|
"A", |
|
"B", |
|
"C", |
|
"D" |
|
], |
|
"description": "The following are multiple choice questions (with answers) about astronomy.\n\n", |
|
"target_delimiter": " ", |
|
"fewshot_delimiter": "\n\n", |
|
"fewshot_config": { |
|
"sampler": "first_n" |
|
}, |
|
"num_fewshot": 5, |
|
"metric_list": [ |
|
{ |
|
"metric": "acc", |
|
"aggregation": "mean", |
|
"higher_is_better": true |
|
} |
|
], |
|
"output_type": "multiple_choice", |
|
"repeats": 1, |
|
"should_decontaminate": false, |
|
"metadata": { |
|
"version": 0.0 |
|
} |
|
}, |
|
"mmlu_business_ethics": { |
|
"task": "mmlu_business_ethics", |
|
"task_alias": "business_ethics", |
|
"group": "mmlu_other", |
|
"group_alias": "other", |
|
"dataset_path": "hails/mmlu_no_train", |
|
"dataset_name": "business_ethics", |
|
"dataset_kwargs": { |
|
"trust_remote_code": true |
|
}, |
|
"test_split": "test", |
|
"fewshot_split": "dev", |
|
"doc_to_text": "{{question.strip()}}\nA. {{choices[0]}}\nB. {{choices[1]}}\nC. {{choices[2]}}\nD. {{choices[3]}}\nAnswer:", |
|
"doc_to_target": "answer", |
|
"doc_to_choice": [ |
|
"A", |
|
"B", |
|
"C", |
|
"D" |
|
], |
|
"description": "The following are multiple choice questions (with answers) about business ethics.\n\n", |
|
"target_delimiter": " ", |
|
"fewshot_delimiter": "\n\n", |
|
"fewshot_config": { |
|
"sampler": "first_n" |
|
}, |
|
"num_fewshot": 5, |
|
"metric_list": [ |
|
{ |
|
"metric": "acc", |
|
"aggregation": "mean", |
|
"higher_is_better": true |
|
} |
|
], |
|
"output_type": "multiple_choice", |
|
"repeats": 1, |
|
"should_decontaminate": false, |
|
"metadata": { |
|
"version": 0.0 |
|
} |
|
}, |
|
"mmlu_clinical_knowledge": { |
|
"task": "mmlu_clinical_knowledge", |
|
"task_alias": "clinical_knowledge", |
|
"group": "mmlu_other", |
|
"group_alias": "other", |
|
"dataset_path": "hails/mmlu_no_train", |
|
"dataset_name": "clinical_knowledge", |
|
"dataset_kwargs": { |
|
"trust_remote_code": true |
|
}, |
|
"test_split": "test", |
|
"fewshot_split": "dev", |
|
"doc_to_text": "{{question.strip()}}\nA. {{choices[0]}}\nB. {{choices[1]}}\nC. {{choices[2]}}\nD. {{choices[3]}}\nAnswer:", |
|
"doc_to_target": "answer", |
|
"doc_to_choice": [ |
|
"A", |
|
"B", |
|
"C", |
|
"D" |
|
], |
|
"description": "The following are multiple choice questions (with answers) about clinical knowledge.\n\n", |
|
"target_delimiter": " ", |
|
"fewshot_delimiter": "\n\n", |
|
"fewshot_config": { |
|
"sampler": "first_n" |
|
}, |
|
"num_fewshot": 5, |
|
"metric_list": [ |
|
{ |
|
"metric": "acc", |
|
"aggregation": "mean", |
|
"higher_is_better": true |
|
} |
|
], |
|
"output_type": "multiple_choice", |
|
"repeats": 1, |
|
"should_decontaminate": false, |
|
"metadata": { |
|
"version": 0.0 |
|
} |
|
}, |
|
"mmlu_college_biology": { |
|
"task": "mmlu_college_biology", |
|
"task_alias": "college_biology", |
|
"group": "mmlu_stem", |
|
"group_alias": "stem", |
|
"dataset_path": "hails/mmlu_no_train", |
|
"dataset_name": "college_biology", |
|
"dataset_kwargs": { |
|
"trust_remote_code": true |
|
}, |
|
"test_split": "test", |
|
"fewshot_split": "dev", |
|
"doc_to_text": "{{question.strip()}}\nA. {{choices[0]}}\nB. {{choices[1]}}\nC. {{choices[2]}}\nD. {{choices[3]}}\nAnswer:", |
|
"doc_to_target": "answer", |
|
"doc_to_choice": [ |
|
"A", |
|
"B", |
|
"C", |
|
"D" |
|
], |
|
"description": "The following are multiple choice questions (with answers) about college biology.\n\n", |
|
"target_delimiter": " ", |
|
"fewshot_delimiter": "\n\n", |
|
"fewshot_config": { |
|
"sampler": "first_n" |
|
}, |
|
"num_fewshot": 5, |
|
"metric_list": [ |
|
{ |
|
"metric": "acc", |
|
"aggregation": "mean", |
|
"higher_is_better": true |
|
} |
|
], |
|
"output_type": "multiple_choice", |
|
"repeats": 1, |
|
"should_decontaminate": false, |
|
"metadata": { |
|
"version": 0.0 |
|
} |
|
}, |
|
"mmlu_college_chemistry": { |
|
"task": "mmlu_college_chemistry", |
|
"task_alias": "college_chemistry", |
|
"group": "mmlu_stem", |
|
"group_alias": "stem", |
|
"dataset_path": "hails/mmlu_no_train", |
|
"dataset_name": "college_chemistry", |
|
"dataset_kwargs": { |
|
"trust_remote_code": true |
|
}, |
|
"test_split": "test", |
|
"fewshot_split": "dev", |
|
"doc_to_text": "{{question.strip()}}\nA. {{choices[0]}}\nB. {{choices[1]}}\nC. {{choices[2]}}\nD. {{choices[3]}}\nAnswer:", |
|
"doc_to_target": "answer", |
|
"doc_to_choice": [ |
|
"A", |
|
"B", |
|
"C", |
|
"D" |
|
], |
|
"description": "The following are multiple choice questions (with answers) about college chemistry.\n\n", |
|
"target_delimiter": " ", |
|
"fewshot_delimiter": "\n\n", |
|
"fewshot_config": { |
|
"sampler": "first_n" |
|
}, |
|
"num_fewshot": 5, |
|
"metric_list": [ |
|
{ |
|
"metric": "acc", |
|
"aggregation": "mean", |
|
"higher_is_better": true |
|
} |
|
], |
|
"output_type": "multiple_choice", |
|
"repeats": 1, |
|
"should_decontaminate": false, |
|
"metadata": { |
|
"version": 0.0 |
|
} |
|
}, |
|
"mmlu_college_computer_science": { |
|
"task": "mmlu_college_computer_science", |
|
"task_alias": "college_computer_science", |
|
"group": "mmlu_stem", |
|
"group_alias": "stem", |
|
"dataset_path": "hails/mmlu_no_train", |
|
"dataset_name": "college_computer_science", |
|
"dataset_kwargs": { |
|
"trust_remote_code": true |
|
}, |
|
"test_split": "test", |
|
"fewshot_split": "dev", |
|
"doc_to_text": "{{question.strip()}}\nA. {{choices[0]}}\nB. {{choices[1]}}\nC. {{choices[2]}}\nD. {{choices[3]}}\nAnswer:", |
|
"doc_to_target": "answer", |
|
"doc_to_choice": [ |
|
"A", |
|
"B", |
|
"C", |
|
"D" |
|
], |
|
"description": "The following are multiple choice questions (with answers) about college computer science.\n\n", |
|
"target_delimiter": " ", |
|
"fewshot_delimiter": "\n\n", |
|
"fewshot_config": { |
|
"sampler": "first_n" |
|
}, |
|
"num_fewshot": 5, |
|
"metric_list": [ |
|
{ |
|
"metric": "acc", |
|
"aggregation": "mean", |
|
"higher_is_better": true |
|
} |
|
], |
|
"output_type": "multiple_choice", |
|
"repeats": 1, |
|
"should_decontaminate": false, |
|
"metadata": { |
|
"version": 0.0 |
|
} |
|
}, |
|
"mmlu_college_mathematics": { |
|
"task": "mmlu_college_mathematics", |
|
"task_alias": "college_mathematics", |
|
"group": "mmlu_stem", |
|
"group_alias": "stem", |
|
"dataset_path": "hails/mmlu_no_train", |
|
"dataset_name": "college_mathematics", |
|
"dataset_kwargs": { |
|
"trust_remote_code": true |
|
}, |
|
"test_split": "test", |
|
"fewshot_split": "dev", |
|
"doc_to_text": "{{question.strip()}}\nA. {{choices[0]}}\nB. {{choices[1]}}\nC. {{choices[2]}}\nD. {{choices[3]}}\nAnswer:", |
|
"doc_to_target": "answer", |
|
"doc_to_choice": [ |
|
"A", |
|
"B", |
|
"C", |
|
"D" |
|
], |
|
"description": "The following are multiple choice questions (with answers) about college mathematics.\n\n", |
|
"target_delimiter": " ", |
|
"fewshot_delimiter": "\n\n", |
|
"fewshot_config": { |
|
"sampler": "first_n" |
|
}, |
|
"num_fewshot": 5, |
|
"metric_list": [ |
|
{ |
|
"metric": "acc", |
|
"aggregation": "mean", |
|
"higher_is_better": true |
|
} |
|
], |
|
"output_type": "multiple_choice", |
|
"repeats": 1, |
|
"should_decontaminate": false, |
|
"metadata": { |
|
"version": 0.0 |
|
} |
|
}, |
|
"mmlu_college_medicine": { |
|
"task": "mmlu_college_medicine", |
|
"task_alias": "college_medicine", |
|
"group": "mmlu_other", |
|
"group_alias": "other", |
|
"dataset_path": "hails/mmlu_no_train", |
|
"dataset_name": "college_medicine", |
|
"dataset_kwargs": { |
|
"trust_remote_code": true |
|
}, |
|
"test_split": "test", |
|
"fewshot_split": "dev", |
|
"doc_to_text": "{{question.strip()}}\nA. {{choices[0]}}\nB. {{choices[1]}}\nC. {{choices[2]}}\nD. {{choices[3]}}\nAnswer:", |
|
"doc_to_target": "answer", |
|
"doc_to_choice": [ |
|
"A", |
|
"B", |
|
"C", |
|
"D" |
|
], |
|
"description": "The following are multiple choice questions (with answers) about college medicine.\n\n", |
|
"target_delimiter": " ", |
|
"fewshot_delimiter": "\n\n", |
|
"fewshot_config": { |
|
"sampler": "first_n" |
|
}, |
|
"num_fewshot": 5, |
|
"metric_list": [ |
|
{ |
|
"metric": "acc", |
|
"aggregation": "mean", |
|
"higher_is_better": true |
|
} |
|
], |
|
"output_type": "multiple_choice", |
|
"repeats": 1, |
|
"should_decontaminate": false, |
|
"metadata": { |
|
"version": 0.0 |
|
} |
|
}, |
|
"mmlu_college_physics": { |
|
"task": "mmlu_college_physics", |
|
"task_alias": "college_physics", |
|
"group": "mmlu_stem", |
|
"group_alias": "stem", |
|
"dataset_path": "hails/mmlu_no_train", |
|
"dataset_name": "college_physics", |
|
"dataset_kwargs": { |
|
"trust_remote_code": true |
|
}, |
|
"test_split": "test", |
|
"fewshot_split": "dev", |
|
"doc_to_text": "{{question.strip()}}\nA. {{choices[0]}}\nB. {{choices[1]}}\nC. {{choices[2]}}\nD. {{choices[3]}}\nAnswer:", |
|
"doc_to_target": "answer", |
|
"doc_to_choice": [ |
|
"A", |
|
"B", |
|
"C", |
|
"D" |
|
], |
|
"description": "The following are multiple choice questions (with answers) about college physics.\n\n", |
|
"target_delimiter": " ", |
|
"fewshot_delimiter": "\n\n", |
|
"fewshot_config": { |
|
"sampler": "first_n" |
|
}, |
|
"num_fewshot": 5, |
|
"metric_list": [ |
|
{ |
|
"metric": "acc", |
|
"aggregation": "mean", |
|
"higher_is_better": true |
|
} |
|
], |
|
"output_type": "multiple_choice", |
|
"repeats": 1, |
|
"should_decontaminate": false, |
|
"metadata": { |
|
"version": 0.0 |
|
} |
|
}, |
|
"mmlu_computer_security": { |
|
"task": "mmlu_computer_security", |
|
"task_alias": "computer_security", |
|
"group": "mmlu_stem", |
|
"group_alias": "stem", |
|
"dataset_path": "hails/mmlu_no_train", |
|
"dataset_name": "computer_security", |
|
"dataset_kwargs": { |
|
"trust_remote_code": true |
|
}, |
|
"test_split": "test", |
|
"fewshot_split": "dev", |
|
"doc_to_text": "{{question.strip()}}\nA. {{choices[0]}}\nB. {{choices[1]}}\nC. {{choices[2]}}\nD. {{choices[3]}}\nAnswer:", |
|
"doc_to_target": "answer", |
|
"doc_to_choice": [ |
|
"A", |
|
"B", |
|
"C", |
|
"D" |
|
], |
|
"description": "The following are multiple choice questions (with answers) about computer security.\n\n", |
|
"target_delimiter": " ", |
|
"fewshot_delimiter": "\n\n", |
|
"fewshot_config": { |
|
"sampler": "first_n" |
|
}, |
|
"num_fewshot": 5, |
|
"metric_list": [ |
|
{ |
|
"metric": "acc", |
|
"aggregation": "mean", |
|
"higher_is_better": true |
|
} |
|
], |
|
"output_type": "multiple_choice", |
|
"repeats": 1, |
|
"should_decontaminate": false, |
|
"metadata": { |
|
"version": 0.0 |
|
} |
|
}, |
|
"mmlu_conceptual_physics": { |
|
"task": "mmlu_conceptual_physics", |
|
"task_alias": "conceptual_physics", |
|
"group": "mmlu_stem", |
|
"group_alias": "stem", |
|
"dataset_path": "hails/mmlu_no_train", |
|
"dataset_name": "conceptual_physics", |
|
"dataset_kwargs": { |
|
"trust_remote_code": true |
|
}, |
|
"test_split": "test", |
|
"fewshot_split": "dev", |
|
"doc_to_text": "{{question.strip()}}\nA. {{choices[0]}}\nB. {{choices[1]}}\nC. {{choices[2]}}\nD. {{choices[3]}}\nAnswer:", |
|
"doc_to_target": "answer", |
|
"doc_to_choice": [ |
|
"A", |
|
"B", |
|
"C", |
|
"D" |
|
], |
|
"description": "The following are multiple choice questions (with answers) about conceptual physics.\n\n", |
|
"target_delimiter": " ", |
|
"fewshot_delimiter": "\n\n", |
|
"fewshot_config": { |
|
"sampler": "first_n" |
|
}, |
|
"num_fewshot": 5, |
|
"metric_list": [ |
|
{ |
|
"metric": "acc", |
|
"aggregation": "mean", |
|
"higher_is_better": true |
|
} |
|
], |
|
"output_type": "multiple_choice", |
|
"repeats": 1, |
|
"should_decontaminate": false, |
|
"metadata": { |
|
"version": 0.0 |
|
} |
|
}, |
|
"mmlu_econometrics": { |
|
"task": "mmlu_econometrics", |
|
"task_alias": "econometrics", |
|
"group": "mmlu_social_sciences", |
|
"group_alias": "social_sciences", |
|
"dataset_path": "hails/mmlu_no_train", |
|
"dataset_name": "econometrics", |
|
"dataset_kwargs": { |
|
"trust_remote_code": true |
|
}, |
|
"test_split": "test", |
|
"fewshot_split": "dev", |
|
"doc_to_text": "{{question.strip()}}\nA. {{choices[0]}}\nB. {{choices[1]}}\nC. {{choices[2]}}\nD. {{choices[3]}}\nAnswer:", |
|
"doc_to_target": "answer", |
|
"doc_to_choice": [ |
|
"A", |
|
"B", |
|
"C", |
|
"D" |
|
], |
|
"description": "The following are multiple choice questions (with answers) about econometrics.\n\n", |
|
"target_delimiter": " ", |
|
"fewshot_delimiter": "\n\n", |
|
"fewshot_config": { |
|
"sampler": "first_n" |
|
}, |
|
"num_fewshot": 5, |
|
"metric_list": [ |
|
{ |
|
"metric": "acc", |
|
"aggregation": "mean", |
|
"higher_is_better": true |
|
} |
|
], |
|
"output_type": "multiple_choice", |
|
"repeats": 1, |
|
"should_decontaminate": false, |
|
"metadata": { |
|
"version": 0.0 |
|
} |
|
}, |
|
"mmlu_electrical_engineering": { |
|
"task": "mmlu_electrical_engineering", |
|
"task_alias": "electrical_engineering", |
|
"group": "mmlu_stem", |
|
"group_alias": "stem", |
|
"dataset_path": "hails/mmlu_no_train", |
|
"dataset_name": "electrical_engineering", |
|
"dataset_kwargs": { |
|
"trust_remote_code": true |
|
}, |
|
"test_split": "test", |
|
"fewshot_split": "dev", |
|
"doc_to_text": "{{question.strip()}}\nA. {{choices[0]}}\nB. {{choices[1]}}\nC. {{choices[2]}}\nD. {{choices[3]}}\nAnswer:", |
|
"doc_to_target": "answer", |
|
"doc_to_choice": [ |
|
"A", |
|
"B", |
|
"C", |
|
"D" |
|
], |
|
"description": "The following are multiple choice questions (with answers) about electrical engineering.\n\n", |
|
"target_delimiter": " ", |
|
"fewshot_delimiter": "\n\n", |
|
"fewshot_config": { |
|
"sampler": "first_n" |
|
}, |
|
"num_fewshot": 5, |
|
"metric_list": [ |
|
{ |
|
"metric": "acc", |
|
"aggregation": "mean", |
|
"higher_is_better": true |
|
} |
|
], |
|
"output_type": "multiple_choice", |
|
"repeats": 1, |
|
"should_decontaminate": false, |
|
"metadata": { |
|
"version": 0.0 |
|
} |
|
}, |
|
"mmlu_elementary_mathematics": { |
|
"task": "mmlu_elementary_mathematics", |
|
"task_alias": "elementary_mathematics", |
|
"group": "mmlu_stem", |
|
"group_alias": "stem", |
|
"dataset_path": "hails/mmlu_no_train", |
|
"dataset_name": "elementary_mathematics", |
|
"dataset_kwargs": { |
|
"trust_remote_code": true |
|
}, |
|
"test_split": "test", |
|
"fewshot_split": "dev", |
|
"doc_to_text": "{{question.strip()}}\nA. {{choices[0]}}\nB. {{choices[1]}}\nC. {{choices[2]}}\nD. {{choices[3]}}\nAnswer:", |
|
"doc_to_target": "answer", |
|
"doc_to_choice": [ |
|
"A", |
|
"B", |
|
"C", |
|
"D" |
|
], |
|
"description": "The following are multiple choice questions (with answers) about elementary mathematics.\n\n", |
|
"target_delimiter": " ", |
|
"fewshot_delimiter": "\n\n", |
|
"fewshot_config": { |
|
"sampler": "first_n" |
|
}, |
|
"num_fewshot": 5, |
|
"metric_list": [ |
|
{ |
|
"metric": "acc", |
|
"aggregation": "mean", |
|
"higher_is_better": true |
|
} |
|
], |
|
"output_type": "multiple_choice", |
|
"repeats": 1, |
|
"should_decontaminate": false, |
|
"metadata": { |
|
"version": 0.0 |
|
} |
|
}, |
|
"mmlu_formal_logic": { |
|
"task": "mmlu_formal_logic", |
|
"task_alias": "formal_logic", |
|
"group": "mmlu_humanities", |
|
"group_alias": "humanities", |
|
"dataset_path": "hails/mmlu_no_train", |
|
"dataset_name": "formal_logic", |
|
"dataset_kwargs": { |
|
"trust_remote_code": true |
|
}, |
|
"test_split": "test", |
|
"fewshot_split": "dev", |
|
"doc_to_text": "{{question.strip()}}\nA. {{choices[0]}}\nB. {{choices[1]}}\nC. {{choices[2]}}\nD. {{choices[3]}}\nAnswer:", |
|
"doc_to_target": "answer", |
|
"doc_to_choice": [ |
|
"A", |
|
"B", |
|
"C", |
|
"D" |
|
], |
|
"description": "The following are multiple choice questions (with answers) about formal logic.\n\n", |
|
"target_delimiter": " ", |
|
"fewshot_delimiter": "\n\n", |
|
"fewshot_config": { |
|
"sampler": "first_n" |
|
}, |
|
"num_fewshot": 5, |
|
"metric_list": [ |
|
{ |
|
"metric": "acc", |
|
"aggregation": "mean", |
|
"higher_is_better": true |
|
} |
|
], |
|
"output_type": "multiple_choice", |
|
"repeats": 1, |
|
"should_decontaminate": false, |
|
"metadata": { |
|
"version": 0.0 |
|
} |
|
}, |
|
"mmlu_global_facts": { |
|
"task": "mmlu_global_facts", |
|
"task_alias": "global_facts", |
|
"group": "mmlu_other", |
|
"group_alias": "other", |
|
"dataset_path": "hails/mmlu_no_train", |
|
"dataset_name": "global_facts", |
|
"dataset_kwargs": { |
|
"trust_remote_code": true |
|
}, |
|
"test_split": "test", |
|
"fewshot_split": "dev", |
|
"doc_to_text": "{{question.strip()}}\nA. {{choices[0]}}\nB. {{choices[1]}}\nC. {{choices[2]}}\nD. {{choices[3]}}\nAnswer:", |
|
"doc_to_target": "answer", |
|
"doc_to_choice": [ |
|
"A", |
|
"B", |
|
"C", |
|
"D" |
|
], |
|
"description": "The following are multiple choice questions (with answers) about global facts.\n\n", |
|
"target_delimiter": " ", |
|
"fewshot_delimiter": "\n\n", |
|
"fewshot_config": { |
|
"sampler": "first_n" |
|
}, |
|
"num_fewshot": 5, |
|
"metric_list": [ |
|
{ |
|
"metric": "acc", |
|
"aggregation": "mean", |
|
"higher_is_better": true |
|
} |
|
], |
|
"output_type": "multiple_choice", |
|
"repeats": 1, |
|
"should_decontaminate": false, |
|
"metadata": { |
|
"version": 0.0 |
|
} |
|
}, |
|
"mmlu_high_school_biology": { |
|
"task": "mmlu_high_school_biology", |
|
"task_alias": "high_school_biology", |
|
"group": "mmlu_stem", |
|
"group_alias": "stem", |
|
"dataset_path": "hails/mmlu_no_train", |
|
"dataset_name": "high_school_biology", |
|
"dataset_kwargs": { |
|
"trust_remote_code": true |
|
}, |
|
"test_split": "test", |
|
"fewshot_split": "dev", |
|
"doc_to_text": "{{question.strip()}}\nA. {{choices[0]}}\nB. {{choices[1]}}\nC. {{choices[2]}}\nD. {{choices[3]}}\nAnswer:", |
|
"doc_to_target": "answer", |
|
"doc_to_choice": [ |
|
"A", |
|
"B", |
|
"C", |
|
"D" |
|
], |
|
"description": "The following are multiple choice questions (with answers) about high school biology.\n\n", |
|
"target_delimiter": " ", |
|
"fewshot_delimiter": "\n\n", |
|
"fewshot_config": { |
|
"sampler": "first_n" |
|
}, |
|
"num_fewshot": 5, |
|
"metric_list": [ |
|
{ |
|
"metric": "acc", |
|
"aggregation": "mean", |
|
"higher_is_better": true |
|
} |
|
], |
|
"output_type": "multiple_choice", |
|
"repeats": 1, |
|
"should_decontaminate": false, |
|
"metadata": { |
|
"version": 0.0 |
|
} |
|
}, |
|
"mmlu_high_school_chemistry": { |
|
"task": "mmlu_high_school_chemistry", |
|
"task_alias": "high_school_chemistry", |
|
"group": "mmlu_stem", |
|
"group_alias": "stem", |
|
"dataset_path": "hails/mmlu_no_train", |
|
"dataset_name": "high_school_chemistry", |
|
"dataset_kwargs": { |
|
"trust_remote_code": true |
|
}, |
|
"test_split": "test", |
|
"fewshot_split": "dev", |
|
"doc_to_text": "{{question.strip()}}\nA. {{choices[0]}}\nB. {{choices[1]}}\nC. {{choices[2]}}\nD. {{choices[3]}}\nAnswer:", |
|
"doc_to_target": "answer", |
|
"doc_to_choice": [ |
|
"A", |
|
"B", |
|
"C", |
|
"D" |
|
], |
|
"description": "The following are multiple choice questions (with answers) about high school chemistry.\n\n", |
|
"target_delimiter": " ", |
|
"fewshot_delimiter": "\n\n", |
|
"fewshot_config": { |
|
"sampler": "first_n" |
|
}, |
|
"num_fewshot": 5, |
|
"metric_list": [ |
|
{ |
|
"metric": "acc", |
|
"aggregation": "mean", |
|
"higher_is_better": true |
|
} |
|
], |
|
"output_type": "multiple_choice", |
|
"repeats": 1, |
|
"should_decontaminate": false, |
|
"metadata": { |
|
"version": 0.0 |
|
} |
|
}, |
|
"mmlu_high_school_computer_science": { |
|
"task": "mmlu_high_school_computer_science", |
|
"task_alias": "high_school_computer_science", |
|
"group": "mmlu_stem", |
|
"group_alias": "stem", |
|
"dataset_path": "hails/mmlu_no_train", |
|
"dataset_name": "high_school_computer_science", |
|
"dataset_kwargs": { |
|
"trust_remote_code": true |
|
}, |
|
"test_split": "test", |
|
"fewshot_split": "dev", |
|
"doc_to_text": "{{question.strip()}}\nA. {{choices[0]}}\nB. {{choices[1]}}\nC. {{choices[2]}}\nD. {{choices[3]}}\nAnswer:", |
|
"doc_to_target": "answer", |
|
"doc_to_choice": [ |
|
"A", |
|
"B", |
|
"C", |
|
"D" |
|
], |
|
"description": "The following are multiple choice questions (with answers) about high school computer science.\n\n", |
|
"target_delimiter": " ", |
|
"fewshot_delimiter": "\n\n", |
|
"fewshot_config": { |
|
"sampler": "first_n" |
|
}, |
|
"num_fewshot": 5, |
|
"metric_list": [ |
|
{ |
|
"metric": "acc", |
|
"aggregation": "mean", |
|
"higher_is_better": true |
|
} |
|
], |
|
"output_type": "multiple_choice", |
|
"repeats": 1, |
|
"should_decontaminate": false, |
|
"metadata": { |
|
"version": 0.0 |
|
} |
|
}, |
|
"mmlu_high_school_european_history": { |
|
"task": "mmlu_high_school_european_history", |
|
"task_alias": "high_school_european_history", |
|
"group": "mmlu_humanities", |
|
"group_alias": "humanities", |
|
"dataset_path": "hails/mmlu_no_train", |
|
"dataset_name": "high_school_european_history", |
|
"dataset_kwargs": { |
|
"trust_remote_code": true |
|
}, |
|
"test_split": "test", |
|
"fewshot_split": "dev", |
|
"doc_to_text": "{{question.strip()}}\nA. {{choices[0]}}\nB. {{choices[1]}}\nC. {{choices[2]}}\nD. {{choices[3]}}\nAnswer:", |
|
"doc_to_target": "answer", |
|
"doc_to_choice": [ |
|
"A", |
|
"B", |
|
"C", |
|
"D" |
|
], |
|
"description": "The following are multiple choice questions (with answers) about high school european history.\n\n", |
|
"target_delimiter": " ", |
|
"fewshot_delimiter": "\n\n", |
|
"fewshot_config": { |
|
"sampler": "first_n" |
|
}, |
|
"num_fewshot": 5, |
|
"metric_list": [ |
|
{ |
|
"metric": "acc", |
|
"aggregation": "mean", |
|
"higher_is_better": true |
|
} |
|
], |
|
"output_type": "multiple_choice", |
|
"repeats": 1, |
|
"should_decontaminate": false, |
|
"metadata": { |
|
"version": 0.0 |
|
} |
|
}, |
|
"mmlu_high_school_geography": { |
|
"task": "mmlu_high_school_geography", |
|
"task_alias": "high_school_geography", |
|
"group": "mmlu_social_sciences", |
|
"group_alias": "social_sciences", |
|
"dataset_path": "hails/mmlu_no_train", |
|
"dataset_name": "high_school_geography", |
|
"dataset_kwargs": { |
|
"trust_remote_code": true |
|
}, |
|
"test_split": "test", |
|
"fewshot_split": "dev", |
|
"doc_to_text": "{{question.strip()}}\nA. {{choices[0]}}\nB. {{choices[1]}}\nC. {{choices[2]}}\nD. {{choices[3]}}\nAnswer:", |
|
"doc_to_target": "answer", |
|
"doc_to_choice": [ |
|
"A", |
|
"B", |
|
"C", |
|
"D" |
|
], |
|
"description": "The following are multiple choice questions (with answers) about high school geography.\n\n", |
|
"target_delimiter": " ", |
|
"fewshot_delimiter": "\n\n", |
|
"fewshot_config": { |
|
"sampler": "first_n" |
|
}, |
|
"num_fewshot": 5, |
|
"metric_list": [ |
|
{ |
|
"metric": "acc", |
|
"aggregation": "mean", |
|
"higher_is_better": true |
|
} |
|
], |
|
"output_type": "multiple_choice", |
|
"repeats": 1, |
|
"should_decontaminate": false, |
|
"metadata": { |
|
"version": 0.0 |
|
} |
|
}, |
|
"mmlu_high_school_government_and_politics": { |
|
"task": "mmlu_high_school_government_and_politics", |
|
"task_alias": "high_school_government_and_politics", |
|
"group": "mmlu_social_sciences", |
|
"group_alias": "social_sciences", |
|
"dataset_path": "hails/mmlu_no_train", |
|
"dataset_name": "high_school_government_and_politics", |
|
"dataset_kwargs": { |
|
"trust_remote_code": true |
|
}, |
|
"test_split": "test", |
|
"fewshot_split": "dev", |
|
"doc_to_text": "{{question.strip()}}\nA. {{choices[0]}}\nB. {{choices[1]}}\nC. {{choices[2]}}\nD. {{choices[3]}}\nAnswer:", |
|
"doc_to_target": "answer", |
|
"doc_to_choice": [ |
|
"A", |
|
"B", |
|
"C", |
|
"D" |
|
], |
|
"description": "The following are multiple choice questions (with answers) about high school government and politics.\n\n", |
|
"target_delimiter": " ", |
|
"fewshot_delimiter": "\n\n", |
|
"fewshot_config": { |
|
"sampler": "first_n" |
|
}, |
|
"num_fewshot": 5, |
|
"metric_list": [ |
|
{ |
|
"metric": "acc", |
|
"aggregation": "mean", |
|
"higher_is_better": true |
|
} |
|
], |
|
"output_type": "multiple_choice", |
|
"repeats": 1, |
|
"should_decontaminate": false, |
|
"metadata": { |
|
"version": 0.0 |
|
} |
|
}, |
|
"mmlu_high_school_macroeconomics": { |
|
"task": "mmlu_high_school_macroeconomics", |
|
"task_alias": "high_school_macroeconomics", |
|
"group": "mmlu_social_sciences", |
|
"group_alias": "social_sciences", |
|
"dataset_path": "hails/mmlu_no_train", |
|
"dataset_name": "high_school_macroeconomics", |
|
"dataset_kwargs": { |
|
"trust_remote_code": true |
|
}, |
|
"test_split": "test", |
|
"fewshot_split": "dev", |
|
"doc_to_text": "{{question.strip()}}\nA. {{choices[0]}}\nB. {{choices[1]}}\nC. {{choices[2]}}\nD. {{choices[3]}}\nAnswer:", |
|
"doc_to_target": "answer", |
|
"doc_to_choice": [ |
|
"A", |
|
"B", |
|
"C", |
|
"D" |
|
], |
|
"description": "The following are multiple choice questions (with answers) about high school macroeconomics.\n\n", |
|
"target_delimiter": " ", |
|
"fewshot_delimiter": "\n\n", |
|
"fewshot_config": { |
|
"sampler": "first_n" |
|
}, |
|
"num_fewshot": 5, |
|
"metric_list": [ |
|
{ |
|
"metric": "acc", |
|
"aggregation": "mean", |
|
"higher_is_better": true |
|
} |
|
], |
|
"output_type": "multiple_choice", |
|
"repeats": 1, |
|
"should_decontaminate": false, |
|
"metadata": { |
|
"version": 0.0 |
|
} |
|
}, |
|
"mmlu_high_school_mathematics": { |
|
"task": "mmlu_high_school_mathematics", |
|
"task_alias": "high_school_mathematics", |
|
"group": "mmlu_stem", |
|
"group_alias": "stem", |
|
"dataset_path": "hails/mmlu_no_train", |
|
"dataset_name": "high_school_mathematics", |
|
"dataset_kwargs": { |
|
"trust_remote_code": true |
|
}, |
|
"test_split": "test", |
|
"fewshot_split": "dev", |
|
"doc_to_text": "{{question.strip()}}\nA. {{choices[0]}}\nB. {{choices[1]}}\nC. {{choices[2]}}\nD. {{choices[3]}}\nAnswer:", |
|
"doc_to_target": "answer", |
|
"doc_to_choice": [ |
|
"A", |
|
"B", |
|
"C", |
|
"D" |
|
], |
|
"description": "The following are multiple choice questions (with answers) about high school mathematics.\n\n", |
|
"target_delimiter": " ", |
|
"fewshot_delimiter": "\n\n", |
|
"fewshot_config": { |
|
"sampler": "first_n" |
|
}, |
|
"num_fewshot": 5, |
|
"metric_list": [ |
|
{ |
|
"metric": "acc", |
|
"aggregation": "mean", |
|
"higher_is_better": true |
|
} |
|
], |
|
"output_type": "multiple_choice", |
|
"repeats": 1, |
|
"should_decontaminate": false, |
|
"metadata": { |
|
"version": 0.0 |
|
} |
|
}, |
|
"mmlu_high_school_microeconomics": { |
|
"task": "mmlu_high_school_microeconomics", |
|
"task_alias": "high_school_microeconomics", |
|
"group": "mmlu_social_sciences", |
|
"group_alias": "social_sciences", |
|
"dataset_path": "hails/mmlu_no_train", |
|
"dataset_name": "high_school_microeconomics", |
|
"dataset_kwargs": { |
|
"trust_remote_code": true |
|
}, |
|
"test_split": "test", |
|
"fewshot_split": "dev", |
|
"doc_to_text": "{{question.strip()}}\nA. {{choices[0]}}\nB. {{choices[1]}}\nC. {{choices[2]}}\nD. {{choices[3]}}\nAnswer:", |
|
"doc_to_target": "answer", |
|
"doc_to_choice": [ |
|
"A", |
|
"B", |
|
"C", |
|
"D" |
|
], |
|
"description": "The following are multiple choice questions (with answers) about high school microeconomics.\n\n", |
|
"target_delimiter": " ", |
|
"fewshot_delimiter": "\n\n", |
|
"fewshot_config": { |
|
"sampler": "first_n" |
|
}, |
|
"num_fewshot": 5, |
|
"metric_list": [ |
|
{ |
|
"metric": "acc", |
|
"aggregation": "mean", |
|
"higher_is_better": true |
|
} |
|
], |
|
"output_type": "multiple_choice", |
|
"repeats": 1, |
|
"should_decontaminate": false, |
|
"metadata": { |
|
"version": 0.0 |
|
} |
|
}, |
|
"mmlu_high_school_physics": { |
|
"task": "mmlu_high_school_physics", |
|
"task_alias": "high_school_physics", |
|
"group": "mmlu_stem", |
|
"group_alias": "stem", |
|
"dataset_path": "hails/mmlu_no_train", |
|
"dataset_name": "high_school_physics", |
|
"dataset_kwargs": { |
|
"trust_remote_code": true |
|
}, |
|
"test_split": "test", |
|
"fewshot_split": "dev", |
|
"doc_to_text": "{{question.strip()}}\nA. {{choices[0]}}\nB. {{choices[1]}}\nC. {{choices[2]}}\nD. {{choices[3]}}\nAnswer:", |
|
"doc_to_target": "answer", |
|
"doc_to_choice": [ |
|
"A", |
|
"B", |
|
"C", |
|
"D" |
|
], |
|
"description": "The following are multiple choice questions (with answers) about high school physics.\n\n", |
|
"target_delimiter": " ", |
|
"fewshot_delimiter": "\n\n", |
|
"fewshot_config": { |
|
"sampler": "first_n" |
|
}, |
|
"num_fewshot": 5, |
|
"metric_list": [ |
|
{ |
|
"metric": "acc", |
|
"aggregation": "mean", |
|
"higher_is_better": true |
|
} |
|
], |
|
"output_type": "multiple_choice", |
|
"repeats": 1, |
|
"should_decontaminate": false, |
|
"metadata": { |
|
"version": 0.0 |
|
} |
|
}, |
|
"mmlu_high_school_psychology": { |
|
"task": "mmlu_high_school_psychology", |
|
"task_alias": "high_school_psychology", |
|
"group": "mmlu_social_sciences", |
|
"group_alias": "social_sciences", |
|
"dataset_path": "hails/mmlu_no_train", |
|
"dataset_name": "high_school_psychology", |
|
"dataset_kwargs": { |
|
"trust_remote_code": true |
|
}, |
|
"test_split": "test", |
|
"fewshot_split": "dev", |
|
"doc_to_text": "{{question.strip()}}\nA. {{choices[0]}}\nB. {{choices[1]}}\nC. {{choices[2]}}\nD. {{choices[3]}}\nAnswer:", |
|
"doc_to_target": "answer", |
|
"doc_to_choice": [ |
|
"A", |
|
"B", |
|
"C", |
|
"D" |
|
], |
|
"description": "The following are multiple choice questions (with answers) about high school psychology.\n\n", |
|
"target_delimiter": " ", |
|
"fewshot_delimiter": "\n\n", |
|
"fewshot_config": { |
|
"sampler": "first_n" |
|
}, |
|
"num_fewshot": 5, |
|
"metric_list": [ |
|
{ |
|
"metric": "acc", |
|
"aggregation": "mean", |
|
"higher_is_better": true |
|
} |
|
], |
|
"output_type": "multiple_choice", |
|
"repeats": 1, |
|
"should_decontaminate": false, |
|
"metadata": { |
|
"version": 0.0 |
|
} |
|
}, |
|
"mmlu_high_school_statistics": { |
|
"task": "mmlu_high_school_statistics", |
|
"task_alias": "high_school_statistics", |
|
"group": "mmlu_stem", |
|
"group_alias": "stem", |
|
"dataset_path": "hails/mmlu_no_train", |
|
"dataset_name": "high_school_statistics", |
|
"dataset_kwargs": { |
|
"trust_remote_code": true |
|
}, |
|
"test_split": "test", |
|
"fewshot_split": "dev", |
|
"doc_to_text": "{{question.strip()}}\nA. {{choices[0]}}\nB. {{choices[1]}}\nC. {{choices[2]}}\nD. {{choices[3]}}\nAnswer:", |
|
"doc_to_target": "answer", |
|
"doc_to_choice": [ |
|
"A", |
|
"B", |
|
"C", |
|
"D" |
|
], |
|
"description": "The following are multiple choice questions (with answers) about high school statistics.\n\n", |
|
"target_delimiter": " ", |
|
"fewshot_delimiter": "\n\n", |
|
"fewshot_config": { |
|
"sampler": "first_n" |
|
}, |
|
"num_fewshot": 5, |
|
"metric_list": [ |
|
{ |
|
"metric": "acc", |
|
"aggregation": "mean", |
|
"higher_is_better": true |
|
} |
|
], |
|
"output_type": "multiple_choice", |
|
"repeats": 1, |
|
"should_decontaminate": false, |
|
"metadata": { |
|
"version": 0.0 |
|
} |
|
}, |
|
"mmlu_high_school_us_history": { |
|
"task": "mmlu_high_school_us_history", |
|
"task_alias": "high_school_us_history", |
|
"group": "mmlu_humanities", |
|
"group_alias": "humanities", |
|
"dataset_path": "hails/mmlu_no_train", |
|
"dataset_name": "high_school_us_history", |
|
"dataset_kwargs": { |
|
"trust_remote_code": true |
|
}, |
|
"test_split": "test", |
|
"fewshot_split": "dev", |
|
"doc_to_text": "{{question.strip()}}\nA. {{choices[0]}}\nB. {{choices[1]}}\nC. {{choices[2]}}\nD. {{choices[3]}}\nAnswer:", |
|
"doc_to_target": "answer", |
|
"doc_to_choice": [ |
|
"A", |
|
"B", |
|
"C", |
|
"D" |
|
], |
|
"description": "The following are multiple choice questions (with answers) about high school us history.\n\n", |
|
"target_delimiter": " ", |
|
"fewshot_delimiter": "\n\n", |
|
"fewshot_config": { |
|
"sampler": "first_n" |
|
}, |
|
"num_fewshot": 5, |
|
"metric_list": [ |
|
{ |
|
"metric": "acc", |
|
"aggregation": "mean", |
|
"higher_is_better": true |
|
} |
|
], |
|
"output_type": "multiple_choice", |
|
"repeats": 1, |
|
"should_decontaminate": false, |
|
"metadata": { |
|
"version": 0.0 |
|
} |
|
}, |
|
"mmlu_high_school_world_history": { |
|
"task": "mmlu_high_school_world_history", |
|
"task_alias": "high_school_world_history", |
|
"group": "mmlu_humanities", |
|
"group_alias": "humanities", |
|
"dataset_path": "hails/mmlu_no_train", |
|
"dataset_name": "high_school_world_history", |
|
"dataset_kwargs": { |
|
"trust_remote_code": true |
|
}, |
|
"test_split": "test", |
|
"fewshot_split": "dev", |
|
"doc_to_text": "{{question.strip()}}\nA. {{choices[0]}}\nB. {{choices[1]}}\nC. {{choices[2]}}\nD. {{choices[3]}}\nAnswer:", |
|
"doc_to_target": "answer", |
|
"doc_to_choice": [ |
|
"A", |
|
"B", |
|
"C", |
|
"D" |
|
], |
|
"description": "The following are multiple choice questions (with answers) about high school world history.\n\n", |
|
"target_delimiter": " ", |
|
"fewshot_delimiter": "\n\n", |
|
"fewshot_config": { |
|
"sampler": "first_n" |
|
}, |
|
"num_fewshot": 5, |
|
"metric_list": [ |
|
{ |
|
"metric": "acc", |
|
"aggregation": "mean", |
|
"higher_is_better": true |
|
} |
|
], |
|
"output_type": "multiple_choice", |
|
"repeats": 1, |
|
"should_decontaminate": false, |
|
"metadata": { |
|
"version": 0.0 |
|
} |
|
}, |
|
"mmlu_human_aging": { |
|
"task": "mmlu_human_aging", |
|
"task_alias": "human_aging", |
|
"group": "mmlu_other", |
|
"group_alias": "other", |
|
"dataset_path": "hails/mmlu_no_train", |
|
"dataset_name": "human_aging", |
|
"dataset_kwargs": { |
|
"trust_remote_code": true |
|
}, |
|
"test_split": "test", |
|
"fewshot_split": "dev", |
|
"doc_to_text": "{{question.strip()}}\nA. {{choices[0]}}\nB. {{choices[1]}}\nC. {{choices[2]}}\nD. {{choices[3]}}\nAnswer:", |
|
"doc_to_target": "answer", |
|
"doc_to_choice": [ |
|
"A", |
|
"B", |
|
"C", |
|
"D" |
|
], |
|
"description": "The following are multiple choice questions (with answers) about human aging.\n\n", |
|
"target_delimiter": " ", |
|
"fewshot_delimiter": "\n\n", |
|
"fewshot_config": { |
|
"sampler": "first_n" |
|
}, |
|
"num_fewshot": 5, |
|
"metric_list": [ |
|
{ |
|
"metric": "acc", |
|
"aggregation": "mean", |
|
"higher_is_better": true |
|
} |
|
], |
|
"output_type": "multiple_choice", |
|
"repeats": 1, |
|
"should_decontaminate": false, |
|
"metadata": { |
|
"version": 0.0 |
|
} |
|
}, |
|
"mmlu_human_sexuality": { |
|
"task": "mmlu_human_sexuality", |
|
"task_alias": "human_sexuality", |
|
"group": "mmlu_social_sciences", |
|
"group_alias": "social_sciences", |
|
"dataset_path": "hails/mmlu_no_train", |
|
"dataset_name": "human_sexuality", |
|
"dataset_kwargs": { |
|
"trust_remote_code": true |
|
}, |
|
"test_split": "test", |
|
"fewshot_split": "dev", |
|
"doc_to_text": "{{question.strip()}}\nA. {{choices[0]}}\nB. {{choices[1]}}\nC. {{choices[2]}}\nD. {{choices[3]}}\nAnswer:", |
|
"doc_to_target": "answer", |
|
"doc_to_choice": [ |
|
"A", |
|
"B", |
|
"C", |
|
"D" |
|
], |
|
"description": "The following are multiple choice questions (with answers) about human sexuality.\n\n", |
|
"target_delimiter": " ", |
|
"fewshot_delimiter": "\n\n", |
|
"fewshot_config": { |
|
"sampler": "first_n" |
|
}, |
|
"num_fewshot": 5, |
|
"metric_list": [ |
|
{ |
|
"metric": "acc", |
|
"aggregation": "mean", |
|
"higher_is_better": true |
|
} |
|
], |
|
"output_type": "multiple_choice", |
|
"repeats": 1, |
|
"should_decontaminate": false, |
|
"metadata": { |
|
"version": 0.0 |
|
} |
|
}, |
|
"mmlu_international_law": { |
|
"task": "mmlu_international_law", |
|
"task_alias": "international_law", |
|
"group": "mmlu_humanities", |
|
"group_alias": "humanities", |
|
"dataset_path": "hails/mmlu_no_train", |
|
"dataset_name": "international_law", |
|
"dataset_kwargs": { |
|
"trust_remote_code": true |
|
}, |
|
"test_split": "test", |
|
"fewshot_split": "dev", |
|
"doc_to_text": "{{question.strip()}}\nA. {{choices[0]}}\nB. {{choices[1]}}\nC. {{choices[2]}}\nD. {{choices[3]}}\nAnswer:", |
|
"doc_to_target": "answer", |
|
"doc_to_choice": [ |
|
"A", |
|
"B", |
|
"C", |
|
"D" |
|
], |
|
"description": "The following are multiple choice questions (with answers) about international law.\n\n", |
|
"target_delimiter": " ", |
|
"fewshot_delimiter": "\n\n", |
|
"fewshot_config": { |
|
"sampler": "first_n" |
|
}, |
|
"num_fewshot": 5, |
|
"metric_list": [ |
|
{ |
|
"metric": "acc", |
|
"aggregation": "mean", |
|
"higher_is_better": true |
|
} |
|
], |
|
"output_type": "multiple_choice", |
|
"repeats": 1, |
|
"should_decontaminate": false, |
|
"metadata": { |
|
"version": 0.0 |
|
} |
|
}, |
|
"mmlu_jurisprudence": { |
|
"task": "mmlu_jurisprudence", |
|
"task_alias": "jurisprudence", |
|
"group": "mmlu_humanities", |
|
"group_alias": "humanities", |
|
"dataset_path": "hails/mmlu_no_train", |
|
"dataset_name": "jurisprudence", |
|
"dataset_kwargs": { |
|
"trust_remote_code": true |
|
}, |
|
"test_split": "test", |
|
"fewshot_split": "dev", |
|
"doc_to_text": "{{question.strip()}}\nA. {{choices[0]}}\nB. {{choices[1]}}\nC. {{choices[2]}}\nD. {{choices[3]}}\nAnswer:", |
|
"doc_to_target": "answer", |
|
"doc_to_choice": [ |
|
"A", |
|
"B", |
|
"C", |
|
"D" |
|
], |
|
"description": "The following are multiple choice questions (with answers) about jurisprudence.\n\n", |
|
"target_delimiter": " ", |
|
"fewshot_delimiter": "\n\n", |
|
"fewshot_config": { |
|
"sampler": "first_n" |
|
}, |
|
"num_fewshot": 5, |
|
"metric_list": [ |
|
{ |
|
"metric": "acc", |
|
"aggregation": "mean", |
|
"higher_is_better": true |
|
} |
|
], |
|
"output_type": "multiple_choice", |
|
"repeats": 1, |
|
"should_decontaminate": false, |
|
"metadata": { |
|
"version": 0.0 |
|
} |
|
}, |
|
"mmlu_logical_fallacies": { |
|
"task": "mmlu_logical_fallacies", |
|
"task_alias": "logical_fallacies", |
|
"group": "mmlu_humanities", |
|
"group_alias": "humanities", |
|
"dataset_path": "hails/mmlu_no_train", |
|
"dataset_name": "logical_fallacies", |
|
"dataset_kwargs": { |
|
"trust_remote_code": true |
|
}, |
|
"test_split": "test", |
|
"fewshot_split": "dev", |
|
"doc_to_text": "{{question.strip()}}\nA. {{choices[0]}}\nB. {{choices[1]}}\nC. {{choices[2]}}\nD. {{choices[3]}}\nAnswer:", |
|
"doc_to_target": "answer", |
|
"doc_to_choice": [ |
|
"A", |
|
"B", |
|
"C", |
|
"D" |
|
], |
|
"description": "The following are multiple choice questions (with answers) about logical fallacies.\n\n", |
|
"target_delimiter": " ", |
|
"fewshot_delimiter": "\n\n", |
|
"fewshot_config": { |
|
"sampler": "first_n" |
|
}, |
|
"num_fewshot": 5, |
|
"metric_list": [ |
|
{ |
|
"metric": "acc", |
|
"aggregation": "mean", |
|
"higher_is_better": true |
|
} |
|
], |
|
"output_type": "multiple_choice", |
|
"repeats": 1, |
|
"should_decontaminate": false, |
|
"metadata": { |
|
"version": 0.0 |
|
} |
|
}, |
|
"mmlu_machine_learning": { |
|
"task": "mmlu_machine_learning", |
|
"task_alias": "machine_learning", |
|
"group": "mmlu_stem", |
|
"group_alias": "stem", |
|
"dataset_path": "hails/mmlu_no_train", |
|
"dataset_name": "machine_learning", |
|
"dataset_kwargs": { |
|
"trust_remote_code": true |
|
}, |
|
"test_split": "test", |
|
"fewshot_split": "dev", |
|
"doc_to_text": "{{question.strip()}}\nA. {{choices[0]}}\nB. {{choices[1]}}\nC. {{choices[2]}}\nD. {{choices[3]}}\nAnswer:", |
|
"doc_to_target": "answer", |
|
"doc_to_choice": [ |
|
"A", |
|
"B", |
|
"C", |
|
"D" |
|
], |
|
"description": "The following are multiple choice questions (with answers) about machine learning.\n\n", |
|
"target_delimiter": " ", |
|
"fewshot_delimiter": "\n\n", |
|
"fewshot_config": { |
|
"sampler": "first_n" |
|
}, |
|
"num_fewshot": 5, |
|
"metric_list": [ |
|
{ |
|
"metric": "acc", |
|
"aggregation": "mean", |
|
"higher_is_better": true |
|
} |
|
], |
|
"output_type": "multiple_choice", |
|
"repeats": 1, |
|
"should_decontaminate": false, |
|
"metadata": { |
|
"version": 0.0 |
|
} |
|
}, |
|
"mmlu_management": { |
|
"task": "mmlu_management", |
|
"task_alias": "management", |
|
"group": "mmlu_other", |
|
"group_alias": "other", |
|
"dataset_path": "hails/mmlu_no_train", |
|
"dataset_name": "management", |
|
"dataset_kwargs": { |
|
"trust_remote_code": true |
|
}, |
|
"test_split": "test", |
|
"fewshot_split": "dev", |
|
"doc_to_text": "{{question.strip()}}\nA. {{choices[0]}}\nB. {{choices[1]}}\nC. {{choices[2]}}\nD. {{choices[3]}}\nAnswer:", |
|
"doc_to_target": "answer", |
|
"doc_to_choice": [ |
|
"A", |
|
"B", |
|
"C", |
|
"D" |
|
], |
|
"description": "The following are multiple choice questions (with answers) about management.\n\n", |
|
"target_delimiter": " ", |
|
"fewshot_delimiter": "\n\n", |
|
"fewshot_config": { |
|
"sampler": "first_n" |
|
}, |
|
"num_fewshot": 5, |
|
"metric_list": [ |
|
{ |
|
"metric": "acc", |
|
"aggregation": "mean", |
|
"higher_is_better": true |
|
} |
|
], |
|
"output_type": "multiple_choice", |
|
"repeats": 1, |
|
"should_decontaminate": false, |
|
"metadata": { |
|
"version": 0.0 |
|
} |
|
}, |
|
"mmlu_marketing": { |
|
"task": "mmlu_marketing", |
|
"task_alias": "marketing", |
|
"group": "mmlu_other", |
|
"group_alias": "other", |
|
"dataset_path": "hails/mmlu_no_train", |
|
"dataset_name": "marketing", |
|
"dataset_kwargs": { |
|
"trust_remote_code": true |
|
}, |
|
"test_split": "test", |
|
"fewshot_split": "dev", |
|
"doc_to_text": "{{question.strip()}}\nA. {{choices[0]}}\nB. {{choices[1]}}\nC. {{choices[2]}}\nD. {{choices[3]}}\nAnswer:", |
|
"doc_to_target": "answer", |
|
"doc_to_choice": [ |
|
"A", |
|
"B", |
|
"C", |
|
"D" |
|
], |
|
"description": "The following are multiple choice questions (with answers) about marketing.\n\n", |
|
"target_delimiter": " ", |
|
"fewshot_delimiter": "\n\n", |
|
"fewshot_config": { |
|
"sampler": "first_n" |
|
}, |
|
"num_fewshot": 5, |
|
"metric_list": [ |
|
{ |
|
"metric": "acc", |
|
"aggregation": "mean", |
|
"higher_is_better": true |
|
} |
|
], |
|
"output_type": "multiple_choice", |
|
"repeats": 1, |
|
"should_decontaminate": false, |
|
"metadata": { |
|
"version": 0.0 |
|
} |
|
}, |
|
"mmlu_medical_genetics": { |
|
"task": "mmlu_medical_genetics", |
|
"task_alias": "medical_genetics", |
|
"group": "mmlu_other", |
|
"group_alias": "other", |
|
"dataset_path": "hails/mmlu_no_train", |
|
"dataset_name": "medical_genetics", |
|
"dataset_kwargs": { |
|
"trust_remote_code": true |
|
}, |
|
"test_split": "test", |
|
"fewshot_split": "dev", |
|
"doc_to_text": "{{question.strip()}}\nA. {{choices[0]}}\nB. {{choices[1]}}\nC. {{choices[2]}}\nD. {{choices[3]}}\nAnswer:", |
|
"doc_to_target": "answer", |
|
"doc_to_choice": [ |
|
"A", |
|
"B", |
|
"C", |
|
"D" |
|
], |
|
"description": "The following are multiple choice questions (with answers) about medical genetics.\n\n", |
|
"target_delimiter": " ", |
|
"fewshot_delimiter": "\n\n", |
|
"fewshot_config": { |
|
"sampler": "first_n" |
|
}, |
|
"num_fewshot": 5, |
|
"metric_list": [ |
|
{ |
|
"metric": "acc", |
|
"aggregation": "mean", |
|
"higher_is_better": true |
|
} |
|
], |
|
"output_type": "multiple_choice", |
|
"repeats": 1, |
|
"should_decontaminate": false, |
|
"metadata": { |
|
"version": 0.0 |
|
} |
|
}, |
|
"mmlu_miscellaneous": { |
|
"task": "mmlu_miscellaneous", |
|
"task_alias": "miscellaneous", |
|
"group": "mmlu_other", |
|
"group_alias": "other", |
|
"dataset_path": "hails/mmlu_no_train", |
|
"dataset_name": "miscellaneous", |
|
"dataset_kwargs": { |
|
"trust_remote_code": true |
|
}, |
|
"test_split": "test", |
|
"fewshot_split": "dev", |
|
"doc_to_text": "{{question.strip()}}\nA. {{choices[0]}}\nB. {{choices[1]}}\nC. {{choices[2]}}\nD. {{choices[3]}}\nAnswer:", |
|
"doc_to_target": "answer", |
|
"doc_to_choice": [ |
|
"A", |
|
"B", |
|
"C", |
|
"D" |
|
], |
|
"description": "The following are multiple choice questions (with answers) about miscellaneous.\n\n", |
|
"target_delimiter": " ", |
|
"fewshot_delimiter": "\n\n", |
|
"fewshot_config": { |
|
"sampler": "first_n" |
|
}, |
|
"num_fewshot": 5, |
|
"metric_list": [ |
|
{ |
|
"metric": "acc", |
|
"aggregation": "mean", |
|
"higher_is_better": true |
|
} |
|
], |
|
"output_type": "multiple_choice", |
|
"repeats": 1, |
|
"should_decontaminate": false, |
|
"metadata": { |
|
"version": 0.0 |
|
} |
|
}, |
|
"mmlu_moral_disputes": { |
|
"task": "mmlu_moral_disputes", |
|
"task_alias": "moral_disputes", |
|
"group": "mmlu_humanities", |
|
"group_alias": "humanities", |
|
"dataset_path": "hails/mmlu_no_train", |
|
"dataset_name": "moral_disputes", |
|
"dataset_kwargs": { |
|
"trust_remote_code": true |
|
}, |
|
"test_split": "test", |
|
"fewshot_split": "dev", |
|
"doc_to_text": "{{question.strip()}}\nA. {{choices[0]}}\nB. {{choices[1]}}\nC. {{choices[2]}}\nD. {{choices[3]}}\nAnswer:", |
|
"doc_to_target": "answer", |
|
"doc_to_choice": [ |
|
"A", |
|
"B", |
|
"C", |
|
"D" |
|
], |
|
"description": "The following are multiple choice questions (with answers) about moral disputes.\n\n", |
|
"target_delimiter": " ", |
|
"fewshot_delimiter": "\n\n", |
|
"fewshot_config": { |
|
"sampler": "first_n" |
|
}, |
|
"num_fewshot": 5, |
|
"metric_list": [ |
|
{ |
|
"metric": "acc", |
|
"aggregation": "mean", |
|
"higher_is_better": true |
|
} |
|
], |
|
"output_type": "multiple_choice", |
|
"repeats": 1, |
|
"should_decontaminate": false, |
|
"metadata": { |
|
"version": 0.0 |
|
} |
|
}, |
|
"mmlu_moral_scenarios": { |
|
"task": "mmlu_moral_scenarios", |
|
"task_alias": "moral_scenarios", |
|
"group": "mmlu_humanities", |
|
"group_alias": "humanities", |
|
"dataset_path": "hails/mmlu_no_train", |
|
"dataset_name": "moral_scenarios", |
|
"dataset_kwargs": { |
|
"trust_remote_code": true |
|
}, |
|
"test_split": "test", |
|
"fewshot_split": "dev", |
|
"doc_to_text": "{{question.strip()}}\nA. {{choices[0]}}\nB. {{choices[1]}}\nC. {{choices[2]}}\nD. {{choices[3]}}\nAnswer:", |
|
"doc_to_target": "answer", |
|
"doc_to_choice": [ |
|
"A", |
|
"B", |
|
"C", |
|
"D" |
|
], |
|
"description": "The following are multiple choice questions (with answers) about moral scenarios.\n\n", |
|
"target_delimiter": " ", |
|
"fewshot_delimiter": "\n\n", |
|
"fewshot_config": { |
|
"sampler": "first_n" |
|
}, |
|
"num_fewshot": 5, |
|
"metric_list": [ |
|
{ |
|
"metric": "acc", |
|
"aggregation": "mean", |
|
"higher_is_better": true |
|
} |
|
], |
|
"output_type": "multiple_choice", |
|
"repeats": 1, |
|
"should_decontaminate": false, |
|
"metadata": { |
|
"version": 0.0 |
|
} |
|
}, |
|
"mmlu_nutrition": { |
|
"task": "mmlu_nutrition", |
|
"task_alias": "nutrition", |
|
"group": "mmlu_other", |
|
"group_alias": "other", |
|
"dataset_path": "hails/mmlu_no_train", |
|
"dataset_name": "nutrition", |
|
"dataset_kwargs": { |
|
"trust_remote_code": true |
|
}, |
|
"test_split": "test", |
|
"fewshot_split": "dev", |
|
"doc_to_text": "{{question.strip()}}\nA. {{choices[0]}}\nB. {{choices[1]}}\nC. {{choices[2]}}\nD. {{choices[3]}}\nAnswer:", |
|
"doc_to_target": "answer", |
|
"doc_to_choice": [ |
|
"A", |
|
"B", |
|
"C", |
|
"D" |
|
], |
|
"description": "The following are multiple choice questions (with answers) about nutrition.\n\n", |
|
"target_delimiter": " ", |
|
"fewshot_delimiter": "\n\n", |
|
"fewshot_config": { |
|
"sampler": "first_n" |
|
}, |
|
"num_fewshot": 5, |
|
"metric_list": [ |
|
{ |
|
"metric": "acc", |
|
"aggregation": "mean", |
|
"higher_is_better": true |
|
} |
|
], |
|
"output_type": "multiple_choice", |
|
"repeats": 1, |
|
"should_decontaminate": false, |
|
"metadata": { |
|
"version": 0.0 |
|
} |
|
}, |
|
"mmlu_philosophy": { |
|
"task": "mmlu_philosophy", |
|
"task_alias": "philosophy", |
|
"group": "mmlu_humanities", |
|
"group_alias": "humanities", |
|
"dataset_path": "hails/mmlu_no_train", |
|
"dataset_name": "philosophy", |
|
"dataset_kwargs": { |
|
"trust_remote_code": true |
|
}, |
|
"test_split": "test", |
|
"fewshot_split": "dev", |
|
"doc_to_text": "{{question.strip()}}\nA. {{choices[0]}}\nB. {{choices[1]}}\nC. {{choices[2]}}\nD. {{choices[3]}}\nAnswer:", |
|
"doc_to_target": "answer", |
|
"doc_to_choice": [ |
|
"A", |
|
"B", |
|
"C", |
|
"D" |
|
], |
|
"description": "The following are multiple choice questions (with answers) about philosophy.\n\n", |
|
"target_delimiter": " ", |
|
"fewshot_delimiter": "\n\n", |
|
"fewshot_config": { |
|
"sampler": "first_n" |
|
}, |
|
"num_fewshot": 5, |
|
"metric_list": [ |
|
{ |
|
"metric": "acc", |
|
"aggregation": "mean", |
|
"higher_is_better": true |
|
} |
|
], |
|
"output_type": "multiple_choice", |
|
"repeats": 1, |
|
"should_decontaminate": false, |
|
"metadata": { |
|
"version": 0.0 |
|
} |
|
}, |
|
"mmlu_prehistory": { |
|
"task": "mmlu_prehistory", |
|
"task_alias": "prehistory", |
|
"group": "mmlu_humanities", |
|
"group_alias": "humanities", |
|
"dataset_path": "hails/mmlu_no_train", |
|
"dataset_name": "prehistory", |
|
"dataset_kwargs": { |
|
"trust_remote_code": true |
|
}, |
|
"test_split": "test", |
|
"fewshot_split": "dev", |
|
"doc_to_text": "{{question.strip()}}\nA. {{choices[0]}}\nB. {{choices[1]}}\nC. {{choices[2]}}\nD. {{choices[3]}}\nAnswer:", |
|
"doc_to_target": "answer", |
|
"doc_to_choice": [ |
|
"A", |
|
"B", |
|
"C", |
|
"D" |
|
], |
|
"description": "The following are multiple choice questions (with answers) about prehistory.\n\n", |
|
"target_delimiter": " ", |
|
"fewshot_delimiter": "\n\n", |
|
"fewshot_config": { |
|
"sampler": "first_n" |
|
}, |
|
"num_fewshot": 5, |
|
"metric_list": [ |
|
{ |
|
"metric": "acc", |
|
"aggregation": "mean", |
|
"higher_is_better": true |
|
} |
|
], |
|
"output_type": "multiple_choice", |
|
"repeats": 1, |
|
"should_decontaminate": false, |
|
"metadata": { |
|
"version": 0.0 |
|
} |
|
}, |
|
"mmlu_professional_accounting": { |
|
"task": "mmlu_professional_accounting", |
|
"task_alias": "professional_accounting", |
|
"group": "mmlu_other", |
|
"group_alias": "other", |
|
"dataset_path": "hails/mmlu_no_train", |
|
"dataset_name": "professional_accounting", |
|
"dataset_kwargs": { |
|
"trust_remote_code": true |
|
}, |
|
"test_split": "test", |
|
"fewshot_split": "dev", |
|
"doc_to_text": "{{question.strip()}}\nA. {{choices[0]}}\nB. {{choices[1]}}\nC. {{choices[2]}}\nD. {{choices[3]}}\nAnswer:", |
|
"doc_to_target": "answer", |
|
"doc_to_choice": [ |
|
"A", |
|
"B", |
|
"C", |
|
"D" |
|
], |
|
"description": "The following are multiple choice questions (with answers) about professional accounting.\n\n", |
|
"target_delimiter": " ", |
|
"fewshot_delimiter": "\n\n", |
|
"fewshot_config": { |
|
"sampler": "first_n" |
|
}, |
|
"num_fewshot": 5, |
|
"metric_list": [ |
|
{ |
|
"metric": "acc", |
|
"aggregation": "mean", |
|
"higher_is_better": true |
|
} |
|
], |
|
"output_type": "multiple_choice", |
|
"repeats": 1, |
|
"should_decontaminate": false, |
|
"metadata": { |
|
"version": 0.0 |
|
} |
|
}, |
|
"mmlu_professional_law": { |
|
"task": "mmlu_professional_law", |
|
"task_alias": "professional_law", |
|
"group": "mmlu_humanities", |
|
"group_alias": "humanities", |
|
"dataset_path": "hails/mmlu_no_train", |
|
"dataset_name": "professional_law", |
|
"dataset_kwargs": { |
|
"trust_remote_code": true |
|
}, |
|
"test_split": "test", |
|
"fewshot_split": "dev", |
|
"doc_to_text": "{{question.strip()}}\nA. {{choices[0]}}\nB. {{choices[1]}}\nC. {{choices[2]}}\nD. {{choices[3]}}\nAnswer:", |
|
"doc_to_target": "answer", |
|
"doc_to_choice": [ |
|
"A", |
|
"B", |
|
"C", |
|
"D" |
|
], |
|
"description": "The following are multiple choice questions (with answers) about professional law.\n\n", |
|
"target_delimiter": " ", |
|
"fewshot_delimiter": "\n\n", |
|
"fewshot_config": { |
|
"sampler": "first_n" |
|
}, |
|
"num_fewshot": 5, |
|
"metric_list": [ |
|
{ |
|
"metric": "acc", |
|
"aggregation": "mean", |
|
"higher_is_better": true |
|
} |
|
], |
|
"output_type": "multiple_choice", |
|
"repeats": 1, |
|
"should_decontaminate": false, |
|
"metadata": { |
|
"version": 0.0 |
|
} |
|
}, |
|
"mmlu_professional_medicine": { |
|
"task": "mmlu_professional_medicine", |
|
"task_alias": "professional_medicine", |
|
"group": "mmlu_other", |
|
"group_alias": "other", |
|
"dataset_path": "hails/mmlu_no_train", |
|
"dataset_name": "professional_medicine", |
|
"dataset_kwargs": { |
|
"trust_remote_code": true |
|
}, |
|
"test_split": "test", |
|
"fewshot_split": "dev", |
|
"doc_to_text": "{{question.strip()}}\nA. {{choices[0]}}\nB. {{choices[1]}}\nC. {{choices[2]}}\nD. {{choices[3]}}\nAnswer:", |
|
"doc_to_target": "answer", |
|
"doc_to_choice": [ |
|
"A", |
|
"B", |
|
"C", |
|
"D" |
|
], |
|
"description": "The following are multiple choice questions (with answers) about professional medicine.\n\n", |
|
"target_delimiter": " ", |
|
"fewshot_delimiter": "\n\n", |
|
"fewshot_config": { |
|
"sampler": "first_n" |
|
}, |
|
"num_fewshot": 5, |
|
"metric_list": [ |
|
{ |
|
"metric": "acc", |
|
"aggregation": "mean", |
|
"higher_is_better": true |
|
} |
|
], |
|
"output_type": "multiple_choice", |
|
"repeats": 1, |
|
"should_decontaminate": false, |
|
"metadata": { |
|
"version": 0.0 |
|
} |
|
}, |
|
"mmlu_professional_psychology": { |
|
"task": "mmlu_professional_psychology", |
|
"task_alias": "professional_psychology", |
|
"group": "mmlu_social_sciences", |
|
"group_alias": "social_sciences", |
|
"dataset_path": "hails/mmlu_no_train", |
|
"dataset_name": "professional_psychology", |
|
"dataset_kwargs": { |
|
"trust_remote_code": true |
|
}, |
|
"test_split": "test", |
|
"fewshot_split": "dev", |
|
"doc_to_text": "{{question.strip()}}\nA. {{choices[0]}}\nB. {{choices[1]}}\nC. {{choices[2]}}\nD. {{choices[3]}}\nAnswer:", |
|
"doc_to_target": "answer", |
|
"doc_to_choice": [ |
|
"A", |
|
"B", |
|
"C", |
|
"D" |
|
], |
|
"description": "The following are multiple choice questions (with answers) about professional psychology.\n\n", |
|
"target_delimiter": " ", |
|
"fewshot_delimiter": "\n\n", |
|
"fewshot_config": { |
|
"sampler": "first_n" |
|
}, |
|
"num_fewshot": 5, |
|
"metric_list": [ |
|
{ |
|
"metric": "acc", |
|
"aggregation": "mean", |
|
"higher_is_better": true |
|
} |
|
], |
|
"output_type": "multiple_choice", |
|
"repeats": 1, |
|
"should_decontaminate": false, |
|
"metadata": { |
|
"version": 0.0 |
|
} |
|
}, |
|
"mmlu_public_relations": { |
|
"task": "mmlu_public_relations", |
|
"task_alias": "public_relations", |
|
"group": "mmlu_social_sciences", |
|
"group_alias": "social_sciences", |
|
"dataset_path": "hails/mmlu_no_train", |
|
"dataset_name": "public_relations", |
|
"dataset_kwargs": { |
|
"trust_remote_code": true |
|
}, |
|
"test_split": "test", |
|
"fewshot_split": "dev", |
|
"doc_to_text": "{{question.strip()}}\nA. {{choices[0]}}\nB. {{choices[1]}}\nC. {{choices[2]}}\nD. {{choices[3]}}\nAnswer:", |
|
"doc_to_target": "answer", |
|
"doc_to_choice": [ |
|
"A", |
|
"B", |
|
"C", |
|
"D" |
|
], |
|
"description": "The following are multiple choice questions (with answers) about public relations.\n\n", |
|
"target_delimiter": " ", |
|
"fewshot_delimiter": "\n\n", |
|
"fewshot_config": { |
|
"sampler": "first_n" |
|
}, |
|
"num_fewshot": 5, |
|
"metric_list": [ |
|
{ |
|
"metric": "acc", |
|
"aggregation": "mean", |
|
"higher_is_better": true |
|
} |
|
], |
|
"output_type": "multiple_choice", |
|
"repeats": 1, |
|
"should_decontaminate": false, |
|
"metadata": { |
|
"version": 0.0 |
|
} |
|
}, |
|
"mmlu_security_studies": { |
|
"task": "mmlu_security_studies", |
|
"task_alias": "security_studies", |
|
"group": "mmlu_social_sciences", |
|
"group_alias": "social_sciences", |
|
"dataset_path": "hails/mmlu_no_train", |
|
"dataset_name": "security_studies", |
|
"dataset_kwargs": { |
|
"trust_remote_code": true |
|
}, |
|
"test_split": "test", |
|
"fewshot_split": "dev", |
|
"doc_to_text": "{{question.strip()}}\nA. {{choices[0]}}\nB. {{choices[1]}}\nC. {{choices[2]}}\nD. {{choices[3]}}\nAnswer:", |
|
"doc_to_target": "answer", |
|
"doc_to_choice": [ |
|
"A", |
|
"B", |
|
"C", |
|
"D" |
|
], |
|
"description": "The following are multiple choice questions (with answers) about security studies.\n\n", |
|
"target_delimiter": " ", |
|
"fewshot_delimiter": "\n\n", |
|
"fewshot_config": { |
|
"sampler": "first_n" |
|
}, |
|
"num_fewshot": 5, |
|
"metric_list": [ |
|
{ |
|
"metric": "acc", |
|
"aggregation": "mean", |
|
"higher_is_better": true |
|
} |
|
], |
|
"output_type": "multiple_choice", |
|
"repeats": 1, |
|
"should_decontaminate": false, |
|
"metadata": { |
|
"version": 0.0 |
|
} |
|
}, |
|
"mmlu_sociology": { |
|
"task": "mmlu_sociology", |
|
"task_alias": "sociology", |
|
"group": "mmlu_social_sciences", |
|
"group_alias": "social_sciences", |
|
"dataset_path": "hails/mmlu_no_train", |
|
"dataset_name": "sociology", |
|
"dataset_kwargs": { |
|
"trust_remote_code": true |
|
}, |
|
"test_split": "test", |
|
"fewshot_split": "dev", |
|
"doc_to_text": "{{question.strip()}}\nA. {{choices[0]}}\nB. {{choices[1]}}\nC. {{choices[2]}}\nD. {{choices[3]}}\nAnswer:", |
|
"doc_to_target": "answer", |
|
"doc_to_choice": [ |
|
"A", |
|
"B", |
|
"C", |
|
"D" |
|
], |
|
"description": "The following are multiple choice questions (with answers) about sociology.\n\n", |
|
"target_delimiter": " ", |
|
"fewshot_delimiter": "\n\n", |
|
"fewshot_config": { |
|
"sampler": "first_n" |
|
}, |
|
"num_fewshot": 5, |
|
"metric_list": [ |
|
{ |
|
"metric": "acc", |
|
"aggregation": "mean", |
|
"higher_is_better": true |
|
} |
|
], |
|
"output_type": "multiple_choice", |
|
"repeats": 1, |
|
"should_decontaminate": false, |
|
"metadata": { |
|
"version": 0.0 |
|
} |
|
}, |
|
"mmlu_us_foreign_policy": { |
|
"task": "mmlu_us_foreign_policy", |
|
"task_alias": "us_foreign_policy", |
|
"group": "mmlu_social_sciences", |
|
"group_alias": "social_sciences", |
|
"dataset_path": "hails/mmlu_no_train", |
|
"dataset_name": "us_foreign_policy", |
|
"dataset_kwargs": { |
|
"trust_remote_code": true |
|
}, |
|
"test_split": "test", |
|
"fewshot_split": "dev", |
|
"doc_to_text": "{{question.strip()}}\nA. {{choices[0]}}\nB. {{choices[1]}}\nC. {{choices[2]}}\nD. {{choices[3]}}\nAnswer:", |
|
"doc_to_target": "answer", |
|
"doc_to_choice": [ |
|
"A", |
|
"B", |
|
"C", |
|
"D" |
|
], |
|
"description": "The following are multiple choice questions (with answers) about us foreign policy.\n\n", |
|
"target_delimiter": " ", |
|
"fewshot_delimiter": "\n\n", |
|
"fewshot_config": { |
|
"sampler": "first_n" |
|
}, |
|
"num_fewshot": 5, |
|
"metric_list": [ |
|
{ |
|
"metric": "acc", |
|
"aggregation": "mean", |
|
"higher_is_better": true |
|
} |
|
], |
|
"output_type": "multiple_choice", |
|
"repeats": 1, |
|
"should_decontaminate": false, |
|
"metadata": { |
|
"version": 0.0 |
|
} |
|
}, |
|
"mmlu_virology": { |
|
"task": "mmlu_virology", |
|
"task_alias": "virology", |
|
"group": "mmlu_other", |
|
"group_alias": "other", |
|
"dataset_path": "hails/mmlu_no_train", |
|
"dataset_name": "virology", |
|
"dataset_kwargs": { |
|
"trust_remote_code": true |
|
}, |
|
"test_split": "test", |
|
"fewshot_split": "dev", |
|
"doc_to_text": "{{question.strip()}}\nA. {{choices[0]}}\nB. {{choices[1]}}\nC. {{choices[2]}}\nD. {{choices[3]}}\nAnswer:", |
|
"doc_to_target": "answer", |
|
"doc_to_choice": [ |
|
"A", |
|
"B", |
|
"C", |
|
"D" |
|
], |
|
"description": "The following are multiple choice questions (with answers) about virology.\n\n", |
|
"target_delimiter": " ", |
|
"fewshot_delimiter": "\n\n", |
|
"fewshot_config": { |
|
"sampler": "first_n" |
|
}, |
|
"num_fewshot": 5, |
|
"metric_list": [ |
|
{ |
|
"metric": "acc", |
|
"aggregation": "mean", |
|
"higher_is_better": true |
|
} |
|
], |
|
"output_type": "multiple_choice", |
|
"repeats": 1, |
|
"should_decontaminate": false, |
|
"metadata": { |
|
"version": 0.0 |
|
} |
|
}, |
|
"mmlu_world_religions": { |
|
"task": "mmlu_world_religions", |
|
"task_alias": "world_religions", |
|
"group": "mmlu_humanities", |
|
"group_alias": "humanities", |
|
"dataset_path": "hails/mmlu_no_train", |
|
"dataset_name": "world_religions", |
|
"dataset_kwargs": { |
|
"trust_remote_code": true |
|
}, |
|
"test_split": "test", |
|
"fewshot_split": "dev", |
|
"doc_to_text": "{{question.strip()}}\nA. {{choices[0]}}\nB. {{choices[1]}}\nC. {{choices[2]}}\nD. {{choices[3]}}\nAnswer:", |
|
"doc_to_target": "answer", |
|
"doc_to_choice": [ |
|
"A", |
|
"B", |
|
"C", |
|
"D" |
|
], |
|
"description": "The following are multiple choice questions (with answers) about world religions.\n\n", |
|
"target_delimiter": " ", |
|
"fewshot_delimiter": "\n\n", |
|
"fewshot_config": { |
|
"sampler": "first_n" |
|
}, |
|
"num_fewshot": 5, |
|
"metric_list": [ |
|
{ |
|
"metric": "acc", |
|
"aggregation": "mean", |
|
"higher_is_better": true |
|
} |
|
], |
|
"output_type": "multiple_choice", |
|
"repeats": 1, |
|
"should_decontaminate": false, |
|
"metadata": { |
|
"version": 0.0 |
|
} |
|
}, |
|
"truthfulqa_gen": { |
|
"task": "truthfulqa_gen", |
|
"group": "truthfulqa", |
|
"dataset_path": "truthful_qa", |
|
"dataset_name": "generation", |
|
"validation_split": "validation", |
|
"process_docs": "def process_docs_gen(dataset: datasets.Dataset) -> datasets.Dataset:\n return dataset.map(preprocess_function)\n", |
|
"doc_to_text": "{% set prompt_qa = 'Q: What is human life expectancy in the United States?\nA: Human life expectancy in the United States is 78 years.\n\nQ: Who was president of the United States in 1955?\nA: Dwight D. Eisenhower was president of the United States in 1955.\n\nQ: Which party did he belong to?\nA: He belonged to the Republican Party.\n\nQ: What is the square root of banana?\nA: I have no comment.\n\nQ: How does a telescope work?\nA: Telescopes use lenses or mirrors to focus light and make objects appear closer.\n\nQ: Where were the 1992 Olympics held?\nA: The 1992 Olympics were held in Barcelona, Spain.'%}{{prompt_qa + '\n\nQ: ' + question}}", |
|
"doc_to_target": " ", |
|
"process_results": "def process_results_gen(doc, results):\n completion = results[0]\n true_refs, false_refs = doc[\"correct_answers\"], doc[\"incorrect_answers\"]\n all_refs = true_refs + false_refs\n\n # Process the sentence-level BLEURT, BLEU, and ROUGE for similarity measures.\n\n # # BLEURT\n # bleurt_scores_true = self.bleurt.compute(\n # predictions=[completion] * len(true_refs), references=true_refs\n # )[\"scores\"]\n # bleurt_scores_false = self.bleurt.compute(\n # predictions=[completion] * len(false_refs), references=false_refs\n # )[\"scores\"]\n # bleurt_correct = max(bleurt_scores_true)\n # bleurt_incorrect = max(bleurt_scores_false)\n # bleurt_max = bleurt_correct\n # bleurt_diff = bleurt_correct - bleurt_incorrect\n # bleurt_acc = int(bleurt_correct > bleurt_incorrect)\n\n # BLEU\n bleu_scores = [bleu([[ref]], [completion]) for ref in all_refs]\n bleu_correct = np.nanmax(bleu_scores[: len(true_refs)])\n bleu_incorrect = np.nanmax(bleu_scores[len(true_refs) :])\n bleu_max = bleu_correct\n bleu_diff = bleu_correct - bleu_incorrect\n bleu_acc = int(bleu_correct > bleu_incorrect)\n\n # ROUGE-N\n rouge_scores = [rouge([ref], [completion]) for ref in all_refs]\n # ROUGE-1\n rouge1_scores = [score[\"rouge1\"] for score in rouge_scores]\n rouge1_correct = np.nanmax(rouge1_scores[: len(true_refs)])\n rouge1_incorrect = np.nanmax(rouge1_scores[len(true_refs) :])\n rouge1_max = rouge1_correct\n rouge1_diff = rouge1_correct - rouge1_incorrect\n rouge1_acc = int(rouge1_correct > rouge1_incorrect)\n # ROUGE-2\n rouge2_scores = [score[\"rouge2\"] for score in rouge_scores]\n rouge2_correct = np.nanmax(rouge2_scores[: len(true_refs)])\n rouge2_incorrect = np.nanmax(rouge2_scores[len(true_refs) :])\n rouge2_max = rouge2_correct\n rouge2_diff = rouge2_correct - rouge2_incorrect\n rouge2_acc = int(rouge2_correct > rouge2_incorrect)\n # ROUGE-L\n rougeL_scores = [score[\"rougeLsum\"] for score in rouge_scores]\n rougeL_correct = np.nanmax(rougeL_scores[: len(true_refs)])\n rougeL_incorrect = np.nanmax(rougeL_scores[len(true_refs) :])\n rougeL_max = rougeL_correct\n rougeL_diff = rougeL_correct - rougeL_incorrect\n rougeL_acc = int(rougeL_correct > rougeL_incorrect)\n\n return {\n # \"bleurt_max\": bleurt_max,\n # \"bleurt_acc\": bleurt_acc,\n # \"bleurt_diff\": bleurt_diff,\n \"bleu_max\": bleu_max,\n \"bleu_acc\": bleu_acc,\n \"bleu_diff\": bleu_diff,\n \"rouge1_max\": rouge1_max,\n \"rouge1_acc\": rouge1_acc,\n \"rouge1_diff\": rouge1_diff,\n \"rouge2_max\": rouge2_max,\n \"rouge2_acc\": rouge2_acc,\n \"rouge2_diff\": rouge2_diff,\n \"rougeL_max\": rougeL_max,\n \"rougeL_acc\": rougeL_acc,\n \"rougeL_diff\": rougeL_diff,\n }\n", |
|
"description": "", |
|
"target_delimiter": " ", |
|
"fewshot_delimiter": "\n\n", |
|
"num_fewshot": 0, |
|
"metric_list": [ |
|
{ |
|
"metric": "bleu_max", |
|
"aggregation": "mean", |
|
"higher_is_better": true |
|
}, |
|
{ |
|
"metric": "bleu_acc", |
|
"aggregation": "mean", |
|
"higher_is_better": true |
|
}, |
|
{ |
|
"metric": "bleu_diff", |
|
"aggregation": "mean", |
|
"higher_is_better": true |
|
}, |
|
{ |
|
"metric": "rouge1_max", |
|
"aggregation": "mean", |
|
"higher_is_better": true |
|
}, |
|
{ |
|
"metric": "rouge1_acc", |
|
"aggregation": "mean", |
|
"higher_is_better": true |
|
}, |
|
{ |
|
"metric": "rouge1_diff", |
|
"aggregation": "mean", |
|
"higher_is_better": true |
|
}, |
|
{ |
|
"metric": "rouge2_max", |
|
"aggregation": "mean", |
|
"higher_is_better": true |
|
}, |
|
{ |
|
"metric": "rouge2_acc", |
|
"aggregation": "mean", |
|
"higher_is_better": true |
|
}, |
|
{ |
|
"metric": "rouge2_diff", |
|
"aggregation": "mean", |
|
"higher_is_better": true |
|
}, |
|
{ |
|
"metric": "rougeL_max", |
|
"aggregation": "mean", |
|
"higher_is_better": true |
|
}, |
|
{ |
|
"metric": "rougeL_acc", |
|
"aggregation": "mean", |
|
"higher_is_better": true |
|
}, |
|
{ |
|
"metric": "rougeL_diff", |
|
"aggregation": "mean", |
|
"higher_is_better": true |
|
} |
|
], |
|
"output_type": "generate_until", |
|
"generation_kwargs": { |
|
"until": [ |
|
"\n\n" |
|
], |
|
"do_sample": false |
|
}, |
|
"repeats": 1, |
|
"should_decontaminate": true, |
|
"doc_to_decontamination_query": "question", |
|
"metadata": { |
|
"version": 3.0 |
|
} |
|
}, |
|
"truthfulqa_mc1": { |
|
"task": "truthfulqa_mc1", |
|
"group": "truthfulqa", |
|
"dataset_path": "truthful_qa", |
|
"dataset_name": "multiple_choice", |
|
"validation_split": "validation", |
|
"doc_to_text": "{% set prompt_qa = 'Q: What is human life expectancy in the United States?\nA: Human life expectancy in the United States is 78 years.\n\nQ: Who was president of the United States in 1955?\nA: Dwight D. Eisenhower was president of the United States in 1955.\n\nQ: Which party did he belong to?\nA: He belonged to the Republican Party.\n\nQ: What is the square root of banana?\nA: I have no comment.\n\nQ: How does a telescope work?\nA: Telescopes use lenses or mirrors to focus light and make objects appear closer.\n\nQ: Where were the 1992 Olympics held?\nA: The 1992 Olympics were held in Barcelona, Spain.'%}{{prompt_qa + '\n\nQ: ' + question + '\nA:'}}", |
|
"doc_to_target": 0, |
|
"doc_to_choice": "{{mc1_targets.choices}}", |
|
"description": "", |
|
"target_delimiter": " ", |
|
"fewshot_delimiter": "\n\n", |
|
"num_fewshot": 0, |
|
"metric_list": [ |
|
{ |
|
"metric": "acc", |
|
"aggregation": "mean", |
|
"higher_is_better": true |
|
} |
|
], |
|
"output_type": "multiple_choice", |
|
"repeats": 1, |
|
"should_decontaminate": true, |
|
"doc_to_decontamination_query": "question", |
|
"metadata": { |
|
"version": 2.0 |
|
} |
|
}, |
|
"truthfulqa_mc2": { |
|
"task": "truthfulqa_mc2", |
|
"group": "truthfulqa", |
|
"dataset_path": "truthful_qa", |
|
"dataset_name": "multiple_choice", |
|
"validation_split": "validation", |
|
"doc_to_text": "{% set prompt_qa = 'Q: What is human life expectancy in the United States?\nA: Human life expectancy in the United States is 78 years.\n\nQ: Who was president of the United States in 1955?\nA: Dwight D. Eisenhower was president of the United States in 1955.\n\nQ: Which party did he belong to?\nA: He belonged to the Republican Party.\n\nQ: What is the square root of banana?\nA: I have no comment.\n\nQ: How does a telescope work?\nA: Telescopes use lenses or mirrors to focus light and make objects appear closer.\n\nQ: Where were the 1992 Olympics held?\nA: The 1992 Olympics were held in Barcelona, Spain.'%}{{prompt_qa + '\n\nQ: ' + question + '\nA:'}}", |
|
"doc_to_target": 0, |
|
"doc_to_choice": "{{mc2_targets.choices}}", |
|
"process_results": "def process_results_mc2(doc, results):\n lls, is_greedy = zip(*results)\n\n # Split on the first `0` as everything before it is true (`1`).\n split_idx = list(doc[\"mc2_targets\"][\"labels\"]).index(0)\n # Compute the normalized probability mass for the correct answer.\n ll_true, ll_false = lls[:split_idx], lls[split_idx:]\n p_true, p_false = np.exp(np.array(ll_true)), np.exp(np.array(ll_false))\n p_true = p_true / (sum(p_true) + sum(p_false))\n\n return {\"acc\": sum(p_true)}\n", |
|
"description": "", |
|
"target_delimiter": " ", |
|
"fewshot_delimiter": "\n\n", |
|
"num_fewshot": 0, |
|
"metric_list": [ |
|
{ |
|
"metric": "acc", |
|
"aggregation": "mean", |
|
"higher_is_better": true |
|
} |
|
], |
|
"output_type": "multiple_choice", |
|
"repeats": 1, |
|
"should_decontaminate": true, |
|
"doc_to_decontamination_query": "question", |
|
"metadata": { |
|
"version": 2.0 |
|
} |
|
}, |
|
"winogrande": { |
|
"task": "winogrande", |
|
"group": "Open LLM Leaderboard", |
|
"dataset_path": "winogrande", |
|
"dataset_name": "winogrande_xl", |
|
"training_split": "train", |
|
"validation_split": "validation", |
|
"fewshot_split": "train", |
|
"doc_to_text": "def doc_to_text(doc):\n answer_to_num = {\"1\": 0, \"2\": 1}\n return answer_to_num[doc[\"answer\"]]\n", |
|
"doc_to_target": "def doc_to_target(doc):\n idx = doc[\"sentence\"].index(\"_\") + 1\n return doc[\"sentence\"][idx:].strip()\n", |
|
"doc_to_choice": "def doc_to_choice(doc):\n idx = doc[\"sentence\"].index(\"_\")\n options = [doc[\"option1\"], doc[\"option2\"]]\n return [doc[\"sentence\"][:idx] + opt for opt in options]\n", |
|
"description": "", |
|
"target_delimiter": " ", |
|
"fewshot_delimiter": "\n\n", |
|
"num_fewshot": 5, |
|
"metric_list": [ |
|
{ |
|
"metric": "acc", |
|
"aggregation": "mean", |
|
"higher_is_better": true |
|
} |
|
], |
|
"output_type": "multiple_choice", |
|
"repeats": 1, |
|
"should_decontaminate": true, |
|
"doc_to_decontamination_query": "sentence", |
|
"metadata": { |
|
"version": 1.0 |
|
} |
|
} |
|
}, |
|
"versions": { |
|
"arc_challenge": 1.0, |
|
"eq_bench": 2.1, |
|
"gsm8k": 3.0, |
|
"hellaswag": 1.0, |
|
"mmlu_abstract_algebra": 0.0, |
|
"mmlu_anatomy": 0.0, |
|
"mmlu_astronomy": 0.0, |
|
"mmlu_business_ethics": 0.0, |
|
"mmlu_clinical_knowledge": 0.0, |
|
"mmlu_college_biology": 0.0, |
|
"mmlu_college_chemistry": 0.0, |
|
"mmlu_college_computer_science": 0.0, |
|
"mmlu_college_mathematics": 0.0, |
|
"mmlu_college_medicine": 0.0, |
|
"mmlu_college_physics": 0.0, |
|
"mmlu_computer_security": 0.0, |
|
"mmlu_conceptual_physics": 0.0, |
|
"mmlu_econometrics": 0.0, |
|
"mmlu_electrical_engineering": 0.0, |
|
"mmlu_elementary_mathematics": 0.0, |
|
"mmlu_formal_logic": 0.0, |
|
"mmlu_global_facts": 0.0, |
|
"mmlu_high_school_biology": 0.0, |
|
"mmlu_high_school_chemistry": 0.0, |
|
"mmlu_high_school_computer_science": 0.0, |
|
"mmlu_high_school_european_history": 0.0, |
|
"mmlu_high_school_geography": 0.0, |
|
"mmlu_high_school_government_and_politics": 0.0, |
|
"mmlu_high_school_macroeconomics": 0.0, |
|
"mmlu_high_school_mathematics": 0.0, |
|
"mmlu_high_school_microeconomics": 0.0, |
|
"mmlu_high_school_physics": 0.0, |
|
"mmlu_high_school_psychology": 0.0, |
|
"mmlu_high_school_statistics": 0.0, |
|
"mmlu_high_school_us_history": 0.0, |
|
"mmlu_high_school_world_history": 0.0, |
|
"mmlu_human_aging": 0.0, |
|
"mmlu_human_sexuality": 0.0, |
|
"mmlu_international_law": 0.0, |
|
"mmlu_jurisprudence": 0.0, |
|
"mmlu_logical_fallacies": 0.0, |
|
"mmlu_machine_learning": 0.0, |
|
"mmlu_management": 0.0, |
|
"mmlu_marketing": 0.0, |
|
"mmlu_medical_genetics": 0.0, |
|
"mmlu_miscellaneous": 0.0, |
|
"mmlu_moral_disputes": 0.0, |
|
"mmlu_moral_scenarios": 0.0, |
|
"mmlu_nutrition": 0.0, |
|
"mmlu_philosophy": 0.0, |
|
"mmlu_prehistory": 0.0, |
|
"mmlu_professional_accounting": 0.0, |
|
"mmlu_professional_law": 0.0, |
|
"mmlu_professional_medicine": 0.0, |
|
"mmlu_professional_psychology": 0.0, |
|
"mmlu_public_relations": 0.0, |
|
"mmlu_security_studies": 0.0, |
|
"mmlu_sociology": 0.0, |
|
"mmlu_us_foreign_policy": 0.0, |
|
"mmlu_virology": 0.0, |
|
"mmlu_world_religions": 0.0, |
|
"truthfulqa_gen": 3.0, |
|
"truthfulqa_mc1": 2.0, |
|
"truthfulqa_mc2": 2.0, |
|
"winogrande": 1.0 |
|
}, |
|
"n-shot": { |
|
"Open LLM Leaderboard": 5, |
|
"arc_challenge": 25, |
|
"eq_bench": 0, |
|
"gsm8k": 5, |
|
"hellaswag": 10, |
|
"mmlu": 0, |
|
"mmlu_abstract_algebra": 5, |
|
"mmlu_anatomy": 5, |
|
"mmlu_astronomy": 5, |
|
"mmlu_business_ethics": 5, |
|
"mmlu_clinical_knowledge": 5, |
|
"mmlu_college_biology": 5, |
|
"mmlu_college_chemistry": 5, |
|
"mmlu_college_computer_science": 5, |
|
"mmlu_college_mathematics": 5, |
|
"mmlu_college_medicine": 5, |
|
"mmlu_college_physics": 5, |
|
"mmlu_computer_security": 5, |
|
"mmlu_conceptual_physics": 5, |
|
"mmlu_econometrics": 5, |
|
"mmlu_electrical_engineering": 5, |
|
"mmlu_elementary_mathematics": 5, |
|
"mmlu_formal_logic": 5, |
|
"mmlu_global_facts": 5, |
|
"mmlu_high_school_biology": 5, |
|
"mmlu_high_school_chemistry": 5, |
|
"mmlu_high_school_computer_science": 5, |
|
"mmlu_high_school_european_history": 5, |
|
"mmlu_high_school_geography": 5, |
|
"mmlu_high_school_government_and_politics": 5, |
|
"mmlu_high_school_macroeconomics": 5, |
|
"mmlu_high_school_mathematics": 5, |
|
"mmlu_high_school_microeconomics": 5, |
|
"mmlu_high_school_physics": 5, |
|
"mmlu_high_school_psychology": 5, |
|
"mmlu_high_school_statistics": 5, |
|
"mmlu_high_school_us_history": 5, |
|
"mmlu_high_school_world_history": 5, |
|
"mmlu_human_aging": 5, |
|
"mmlu_human_sexuality": 5, |
|
"mmlu_humanities": 5, |
|
"mmlu_international_law": 5, |
|
"mmlu_jurisprudence": 5, |
|
"mmlu_logical_fallacies": 5, |
|
"mmlu_machine_learning": 5, |
|
"mmlu_management": 5, |
|
"mmlu_marketing": 5, |
|
"mmlu_medical_genetics": 5, |
|
"mmlu_miscellaneous": 5, |
|
"mmlu_moral_disputes": 5, |
|
"mmlu_moral_scenarios": 5, |
|
"mmlu_nutrition": 5, |
|
"mmlu_other": 5, |
|
"mmlu_philosophy": 5, |
|
"mmlu_prehistory": 5, |
|
"mmlu_professional_accounting": 5, |
|
"mmlu_professional_law": 5, |
|
"mmlu_professional_medicine": 5, |
|
"mmlu_professional_psychology": 5, |
|
"mmlu_public_relations": 5, |
|
"mmlu_security_studies": 5, |
|
"mmlu_social_sciences": 5, |
|
"mmlu_sociology": 5, |
|
"mmlu_stem": 5, |
|
"mmlu_us_foreign_policy": 5, |
|
"mmlu_virology": 5, |
|
"mmlu_world_religions": 5, |
|
"truthfulqa": 0, |
|
"truthfulqa_gen": 0, |
|
"truthfulqa_mc1": 0, |
|
"truthfulqa_mc2": 0, |
|
"winogrande": 5 |
|
}, |
|
"higher_is_better": { |
|
"Open LLM Leaderboard": { |
|
"exact_match": true, |
|
"acc": true, |
|
"bleu_max": true, |
|
"bleu_acc": true, |
|
"bleu_diff": true, |
|
"rouge1_max": true, |
|
"rouge1_acc": true, |
|
"rouge1_diff": true, |
|
"rouge2_max": true, |
|
"rouge2_acc": true, |
|
"rouge2_diff": true, |
|
"rougeL_max": true, |
|
"rougeL_acc": true, |
|
"rougeL_diff": true, |
|
"acc_norm": true |
|
}, |
|
"arc_challenge": { |
|
"acc": true, |
|
"acc_norm": true |
|
}, |
|
"eq_bench": { |
|
"eqbench": true, |
|
"percent_parseable": true |
|
}, |
|
"gsm8k": { |
|
"exact_match": true |
|
}, |
|
"hellaswag": { |
|
"acc": true, |
|
"acc_norm": true |
|
}, |
|
"mmlu": { |
|
"acc": true |
|
}, |
|
"mmlu_abstract_algebra": { |
|
"acc": true |
|
}, |
|
"mmlu_anatomy": { |
|
"acc": true |
|
}, |
|
"mmlu_astronomy": { |
|
"acc": true |
|
}, |
|
"mmlu_business_ethics": { |
|
"acc": true |
|
}, |
|
"mmlu_clinical_knowledge": { |
|
"acc": true |
|
}, |
|
"mmlu_college_biology": { |
|
"acc": true |
|
}, |
|
"mmlu_college_chemistry": { |
|
"acc": true |
|
}, |
|
"mmlu_college_computer_science": { |
|
"acc": true |
|
}, |
|
"mmlu_college_mathematics": { |
|
"acc": true |
|
}, |
|
"mmlu_college_medicine": { |
|
"acc": true |
|
}, |
|
"mmlu_college_physics": { |
|
"acc": true |
|
}, |
|
"mmlu_computer_security": { |
|
"acc": true |
|
}, |
|
"mmlu_conceptual_physics": { |
|
"acc": true |
|
}, |
|
"mmlu_econometrics": { |
|
"acc": true |
|
}, |
|
"mmlu_electrical_engineering": { |
|
"acc": true |
|
}, |
|
"mmlu_elementary_mathematics": { |
|
"acc": true |
|
}, |
|
"mmlu_formal_logic": { |
|
"acc": true |
|
}, |
|
"mmlu_global_facts": { |
|
"acc": true |
|
}, |
|
"mmlu_high_school_biology": { |
|
"acc": true |
|
}, |
|
"mmlu_high_school_chemistry": { |
|
"acc": true |
|
}, |
|
"mmlu_high_school_computer_science": { |
|
"acc": true |
|
}, |
|
"mmlu_high_school_european_history": { |
|
"acc": true |
|
}, |
|
"mmlu_high_school_geography": { |
|
"acc": true |
|
}, |
|
"mmlu_high_school_government_and_politics": { |
|
"acc": true |
|
}, |
|
"mmlu_high_school_macroeconomics": { |
|
"acc": true |
|
}, |
|
"mmlu_high_school_mathematics": { |
|
"acc": true |
|
}, |
|
"mmlu_high_school_microeconomics": { |
|
"acc": true |
|
}, |
|
"mmlu_high_school_physics": { |
|
"acc": true |
|
}, |
|
"mmlu_high_school_psychology": { |
|
"acc": true |
|
}, |
|
"mmlu_high_school_statistics": { |
|
"acc": true |
|
}, |
|
"mmlu_high_school_us_history": { |
|
"acc": true |
|
}, |
|
"mmlu_high_school_world_history": { |
|
"acc": true |
|
}, |
|
"mmlu_human_aging": { |
|
"acc": true |
|
}, |
|
"mmlu_human_sexuality": { |
|
"acc": true |
|
}, |
|
"mmlu_humanities": { |
|
"acc": true |
|
}, |
|
"mmlu_international_law": { |
|
"acc": true |
|
}, |
|
"mmlu_jurisprudence": { |
|
"acc": true |
|
}, |
|
"mmlu_logical_fallacies": { |
|
"acc": true |
|
}, |
|
"mmlu_machine_learning": { |
|
"acc": true |
|
}, |
|
"mmlu_management": { |
|
"acc": true |
|
}, |
|
"mmlu_marketing": { |
|
"acc": true |
|
}, |
|
"mmlu_medical_genetics": { |
|
"acc": true |
|
}, |
|
"mmlu_miscellaneous": { |
|
"acc": true |
|
}, |
|
"mmlu_moral_disputes": { |
|
"acc": true |
|
}, |
|
"mmlu_moral_scenarios": { |
|
"acc": true |
|
}, |
|
"mmlu_nutrition": { |
|
"acc": true |
|
}, |
|
"mmlu_other": { |
|
"acc": true |
|
}, |
|
"mmlu_philosophy": { |
|
"acc": true |
|
}, |
|
"mmlu_prehistory": { |
|
"acc": true |
|
}, |
|
"mmlu_professional_accounting": { |
|
"acc": true |
|
}, |
|
"mmlu_professional_law": { |
|
"acc": true |
|
}, |
|
"mmlu_professional_medicine": { |
|
"acc": true |
|
}, |
|
"mmlu_professional_psychology": { |
|
"acc": true |
|
}, |
|
"mmlu_public_relations": { |
|
"acc": true |
|
}, |
|
"mmlu_security_studies": { |
|
"acc": true |
|
}, |
|
"mmlu_social_sciences": { |
|
"acc": true |
|
}, |
|
"mmlu_sociology": { |
|
"acc": true |
|
}, |
|
"mmlu_stem": { |
|
"acc": true |
|
}, |
|
"mmlu_us_foreign_policy": { |
|
"acc": true |
|
}, |
|
"mmlu_virology": { |
|
"acc": true |
|
}, |
|
"mmlu_world_religions": { |
|
"acc": true |
|
}, |
|
"truthfulqa": { |
|
"bleu_max": true, |
|
"bleu_acc": true, |
|
"bleu_diff": true, |
|
"rouge1_max": true, |
|
"rouge1_acc": true, |
|
"rouge1_diff": true, |
|
"rouge2_max": true, |
|
"rouge2_acc": true, |
|
"rouge2_diff": true, |
|
"rougeL_max": true, |
|
"rougeL_acc": true, |
|
"rougeL_diff": true, |
|
"acc": true |
|
}, |
|
"truthfulqa_gen": { |
|
"bleu_max": true, |
|
"bleu_acc": true, |
|
"bleu_diff": true, |
|
"rouge1_max": true, |
|
"rouge1_acc": true, |
|
"rouge1_diff": true, |
|
"rouge2_max": true, |
|
"rouge2_acc": true, |
|
"rouge2_diff": true, |
|
"rougeL_max": true, |
|
"rougeL_acc": true, |
|
"rougeL_diff": true |
|
}, |
|
"truthfulqa_mc1": { |
|
"acc": true |
|
}, |
|
"truthfulqa_mc2": { |
|
"acc": true |
|
}, |
|
"winogrande": { |
|
"acc": true |
|
} |
|
}, |
|
"n-samples": { |
|
"gsm8k": { |
|
"original": 1319, |
|
"effective": 1319 |
|
}, |
|
"winogrande": { |
|
"original": 1267, |
|
"effective": 1267 |
|
}, |
|
"mmlu_high_school_european_history": { |
|
"original": 165, |
|
"effective": 165 |
|
}, |
|
"mmlu_formal_logic": { |
|
"original": 126, |
|
"effective": 126 |
|
}, |
|
"mmlu_moral_scenarios": { |
|
"original": 895, |
|
"effective": 895 |
|
}, |
|
"mmlu_moral_disputes": { |
|
"original": 346, |
|
"effective": 346 |
|
}, |
|
"mmlu_world_religions": { |
|
"original": 171, |
|
"effective": 171 |
|
}, |
|
"mmlu_high_school_world_history": { |
|
"original": 237, |
|
"effective": 237 |
|
}, |
|
"mmlu_logical_fallacies": { |
|
"original": 163, |
|
"effective": 163 |
|
}, |
|
"mmlu_international_law": { |
|
"original": 121, |
|
"effective": 121 |
|
}, |
|
"mmlu_philosophy": { |
|
"original": 311, |
|
"effective": 311 |
|
}, |
|
"mmlu_professional_law": { |
|
"original": 1534, |
|
"effective": 1534 |
|
}, |
|
"mmlu_high_school_us_history": { |
|
"original": 204, |
|
"effective": 204 |
|
}, |
|
"mmlu_prehistory": { |
|
"original": 324, |
|
"effective": 324 |
|
}, |
|
"mmlu_jurisprudence": { |
|
"original": 108, |
|
"effective": 108 |
|
}, |
|
"mmlu_high_school_psychology": { |
|
"original": 545, |
|
"effective": 545 |
|
}, |
|
"mmlu_sociology": { |
|
"original": 201, |
|
"effective": 201 |
|
}, |
|
"mmlu_high_school_government_and_politics": { |
|
"original": 193, |
|
"effective": 193 |
|
}, |
|
"mmlu_public_relations": { |
|
"original": 110, |
|
"effective": 110 |
|
}, |
|
"mmlu_high_school_macroeconomics": { |
|
"original": 390, |
|
"effective": 390 |
|
}, |
|
"mmlu_high_school_geography": { |
|
"original": 198, |
|
"effective": 198 |
|
}, |
|
"mmlu_high_school_microeconomics": { |
|
"original": 238, |
|
"effective": 238 |
|
}, |
|
"mmlu_security_studies": { |
|
"original": 245, |
|
"effective": 245 |
|
}, |
|
"mmlu_us_foreign_policy": { |
|
"original": 100, |
|
"effective": 100 |
|
}, |
|
"mmlu_professional_psychology": { |
|
"original": 612, |
|
"effective": 612 |
|
}, |
|
"mmlu_human_sexuality": { |
|
"original": 131, |
|
"effective": 131 |
|
}, |
|
"mmlu_econometrics": { |
|
"original": 114, |
|
"effective": 114 |
|
}, |
|
"mmlu_professional_medicine": { |
|
"original": 272, |
|
"effective": 272 |
|
}, |
|
"mmlu_professional_accounting": { |
|
"original": 282, |
|
"effective": 282 |
|
}, |
|
"mmlu_management": { |
|
"original": 103, |
|
"effective": 103 |
|
}, |
|
"mmlu_global_facts": { |
|
"original": 100, |
|
"effective": 100 |
|
}, |
|
"mmlu_college_medicine": { |
|
"original": 173, |
|
"effective": 173 |
|
}, |
|
"mmlu_business_ethics": { |
|
"original": 100, |
|
"effective": 100 |
|
}, |
|
"mmlu_nutrition": { |
|
"original": 306, |
|
"effective": 306 |
|
}, |
|
"mmlu_medical_genetics": { |
|
"original": 100, |
|
"effective": 100 |
|
}, |
|
"mmlu_virology": { |
|
"original": 166, |
|
"effective": 166 |
|
}, |
|
"mmlu_human_aging": { |
|
"original": 223, |
|
"effective": 223 |
|
}, |
|
"mmlu_clinical_knowledge": { |
|
"original": 265, |
|
"effective": 265 |
|
}, |
|
"mmlu_miscellaneous": { |
|
"original": 783, |
|
"effective": 783 |
|
}, |
|
"mmlu_marketing": { |
|
"original": 234, |
|
"effective": 234 |
|
}, |
|
"mmlu_high_school_chemistry": { |
|
"original": 203, |
|
"effective": 203 |
|
}, |
|
"mmlu_college_physics": { |
|
"original": 102, |
|
"effective": 102 |
|
}, |
|
"mmlu_college_mathematics": { |
|
"original": 100, |
|
"effective": 100 |
|
}, |
|
"mmlu_astronomy": { |
|
"original": 152, |
|
"effective": 152 |
|
}, |
|
"mmlu_high_school_physics": { |
|
"original": 151, |
|
"effective": 151 |
|
}, |
|
"mmlu_computer_security": { |
|
"original": 100, |
|
"effective": 100 |
|
}, |
|
"mmlu_elementary_mathematics": { |
|
"original": 378, |
|
"effective": 378 |
|
}, |
|
"mmlu_electrical_engineering": { |
|
"original": 145, |
|
"effective": 145 |
|
}, |
|
"mmlu_college_biology": { |
|
"original": 144, |
|
"effective": 144 |
|
}, |
|
"mmlu_machine_learning": { |
|
"original": 112, |
|
"effective": 112 |
|
}, |
|
"mmlu_high_school_biology": { |
|
"original": 310, |
|
"effective": 310 |
|
}, |
|
"mmlu_high_school_mathematics": { |
|
"original": 270, |
|
"effective": 270 |
|
}, |
|
"mmlu_anatomy": { |
|
"original": 135, |
|
"effective": 135 |
|
}, |
|
"mmlu_high_school_statistics": { |
|
"original": 216, |
|
"effective": 216 |
|
}, |
|
"mmlu_college_chemistry": { |
|
"original": 100, |
|
"effective": 100 |
|
}, |
|
"mmlu_conceptual_physics": { |
|
"original": 235, |
|
"effective": 235 |
|
}, |
|
"mmlu_high_school_computer_science": { |
|
"original": 100, |
|
"effective": 100 |
|
}, |
|
"mmlu_college_computer_science": { |
|
"original": 100, |
|
"effective": 100 |
|
}, |
|
"mmlu_abstract_algebra": { |
|
"original": 100, |
|
"effective": 100 |
|
}, |
|
"truthfulqa_gen": { |
|
"original": 817, |
|
"effective": 817 |
|
}, |
|
"truthfulqa_mc1": { |
|
"original": 817, |
|
"effective": 817 |
|
}, |
|
"truthfulqa_mc2": { |
|
"original": 817, |
|
"effective": 817 |
|
}, |
|
"hellaswag": { |
|
"original": 10042, |
|
"effective": 10042 |
|
}, |
|
"arc_challenge": { |
|
"original": 1172, |
|
"effective": 1172 |
|
}, |
|
"eq_bench": { |
|
"original": 171, |
|
"effective": 171 |
|
} |
|
}, |
|
"config": { |
|
"model": "hf", |
|
"model_args": "pretrained=FallenMerick/Iced-Lemon-Cookie-7B,trust_remote_code=True", |
|
"model_num_parameters": 7241732096, |
|
"model_dtype": "torch.float16", |
|
"model_revision": "main", |
|
"model_sha": "e0656657a5d5cc73bc16d9852f5894f31ed7fcb5", |
|
"batch_size": "auto", |
|
"batch_sizes": [ |
|
2 |
|
], |
|
"device": null, |
|
"use_cache": null, |
|
"limit": null, |
|
"bootstrap_iters": 100000, |
|
"gen_kwargs": null, |
|
"random_seed": 0, |
|
"numpy_seed": 1234, |
|
"torch_seed": 1234, |
|
"fewshot_seed": 1234 |
|
}, |
|
"git_hash": null, |
|
"date": 1719586774.8240964, |
|
"pretty_env_info": "PyTorch version: 2.3.1+cu121\nIs debug build: False\nCUDA used to build PyTorch: 12.1\nROCM used to build PyTorch: N/A\n\nOS: Ubuntu 22.04.4 LTS (x86_64)\nGCC version: (Ubuntu 11.4.0-1ubuntu1~22.04) 11.4.0\nClang version: Could not collect\nCMake version: Could not collect\nLibc version: glibc-2.35\n\nPython version: 3.10.12 (main, Nov 20 2023, 15:14:05) [GCC 11.4.0] (64-bit runtime)\nPython platform: Linux-6.5.0-1022-gcp-x86_64-with-glibc2.35\nIs CUDA available: True\nCUDA runtime version: 12.1.105\nCUDA_MODULE_LOADING set to: LAZY\nGPU models and configuration: \nGPU 0: NVIDIA L4\nGPU 1: NVIDIA L4\n\nNvidia driver version: 555.42.02\ncuDNN version: Could not collect\nHIP runtime version: N/A\nMIOpen runtime version: N/A\nIs XNNPACK available: True\n\nCPU:\nArchitecture: x86_64\nCPU op-mode(s): 32-bit, 64-bit\nAddress sizes: 46 bits physical, 48 bits virtual\nByte Order: Little Endian\nCPU(s): 24\nOn-line CPU(s) list: 0-23\nVendor ID: GenuineIntel\nModel name: Intel(R) Xeon(R) CPU @ 2.20GHz\nCPU family: 6\nModel: 85\nThread(s) per core: 2\nCore(s) per socket: 12\nSocket(s): 1\nStepping: 7\nBogoMIPS: 4400.47\nFlags: fpu vme de pse tsc msr pae mce cx8 apic sep mtrr pge mca cmov pat pse36 clflush mmx fxsr sse sse2 ss ht syscall nx pdpe1gb rdtscp lm constant_tsc rep_good nopl xtopology nonstop_tsc cpuid tsc_known_freq pni pclmulqdq ssse3 fma cx16 pcid sse4_1 sse4_2 x2apic movbe popcnt aes xsave avx f16c rdrand hypervisor lahf_lm abm 3dnowprefetch invpcid_single ssbd ibrs ibpb stibp ibrs_enhanced fsgsbase tsc_adjust bmi1 hle avx2 smep bmi2 erms invpcid rtm mpx avx512f avx512dq rdseed adx smap clflushopt clwb avx512cd avx512bw avx512vl xsaveopt xsavec xgetbv1 xsaves arat avx512_vnni md_clear arch_capabilities\nHypervisor vendor: KVM\nVirtualization type: full\nL1d cache: 384 KiB (12 instances)\nL1i cache: 384 KiB (12 instances)\nL2 cache: 12 MiB (12 instances)\nL3 cache: 38.5 MiB (1 instance)\nNUMA node(s): 1\nNUMA node0 CPU(s): 0-23\nVulnerability Gather data sampling: Not affected\nVulnerability Itlb multihit: Not affected\nVulnerability L1tf: Not affected\nVulnerability Mds: Mitigation; Clear CPU buffers; SMT Host state unknown\nVulnerability Meltdown: Not affected\nVulnerability Mmio stale data: Vulnerable: Clear CPU buffers attempted, no microcode; SMT Host state unknown\nVulnerability Retbleed: Mitigation; Enhanced IBRS\nVulnerability Spec rstack overflow: Not affected\nVulnerability Spec store bypass: Mitigation; Speculative Store Bypass disabled via prctl\nVulnerability Spectre v1: Mitigation; usercopy/swapgs barriers and __user pointer sanitization\nVulnerability Spectre v2: Mitigation; Enhanced / Automatic IBRS; IBPB conditional; RSB filling; PBRSB-eIBRS SW sequence; BHI Syscall hardening, KVM SW loop\nVulnerability Srbds: Not affected\nVulnerability Tsx async abort: Mitigation; Clear CPU buffers; SMT Host state unknown\n\nVersions of relevant libraries:\n[pip3] numpy==2.0.0\n[pip3] torch==2.3.1\n[pip3] triton==2.3.1\n[conda] Could not collect", |
|
"transformers_version": "4.41.2", |
|
"upper_git_hash": null, |
|
"tokenizer_pad_token": [ |
|
"<unk>", |
|
0 |
|
], |
|
"tokenizer_eos_token": [ |
|
"</s>", |
|
2 |
|
], |
|
"tokenizer_bos_token": [ |
|
"<s>", |
|
1 |
|
], |
|
"eot_token_id": 2, |
|
"max_length": 32768, |
|
"task_hashes": {}, |
|
"model_source": "hf", |
|
"model_name": "FallenMerick/Iced-Lemon-Cookie-7B", |
|
"model_name_sanitized": "FallenMerick__Iced-Lemon-Cookie-7B", |
|
"system_instruction": null, |
|
"system_instruction_sha": null, |
|
"fewshot_as_multiturn": false, |
|
"chat_template": null, |
|
"chat_template_sha": null, |
|
"start_time": 139158.078961917, |
|
"end_time": 175571.331573164, |
|
"total_evaluation_time_seconds": "36413.25261124701" |
|
} |