FallenMerick commited on
Commit
0a6581c
1 Parent(s): be7866f

Upload folder using huggingface_hub

Browse files
Intel__neural-chat-7b-v3-1/results_2024-06-27T21-55-55.507233.json ADDED
@@ -0,0 +1,177 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "results": {
3
+ "hellaswag": {
4
+ "acc,none": 0.6323441545508863,
5
+ "acc_stderr,none": 0.004811815959388812,
6
+ "acc_norm,none": 0.7975502887870942,
7
+ "acc_norm_stderr,none": 0.004010043978333027,
8
+ "alias": "hellaswag"
9
+ },
10
+ "eq_bench": {
11
+ "eqbench,none": 62.2626522660805,
12
+ "eqbench_stderr,none": 2.2134366454600554,
13
+ "percent_parseable,none": 100.0,
14
+ "percent_parseable_stderr,none": 0.0,
15
+ "alias": "eq_bench"
16
+ }
17
+ },
18
+ "group_subtasks": {
19
+ "eq_bench": [],
20
+ "hellaswag": []
21
+ },
22
+ "configs": {
23
+ "eq_bench": {
24
+ "task": "eq_bench",
25
+ "dataset_path": "pbevan11/EQ-Bench",
26
+ "validation_split": "validation",
27
+ "doc_to_text": "prompt",
28
+ "doc_to_target": "reference_answer_fullscale",
29
+ "process_results": "def calculate_score_fullscale(docs, results):\n reference = eval(docs[\"reference_answer_fullscale\"])\n user = dict(re.findall(r\"(\\w+):\\s+(\\d+)\", results[0]))\n # First check that the emotions specified in the answer match those in the reference\n if len(user.items()) != 4:\n # print('! Error: 4 emotions were not returned')\n # print(user)\n return {\"eqbench\": 0, \"percent_parseable\": 0}\n emotions_dict = {}\n for emotion, user_emotion_score in user.items():\n for i in range(1, 5):\n if emotion == reference[f\"emotion{i}\"]:\n emotions_dict[emotion] = True\n if len(emotions_dict) != 4:\n print(\"! Error: emotions did not match reference\")\n print(user)\n return {\"eqbench\": 0, \"percent_parseable\": 0}\n\n difference_tally = (\n 0 # Tally of differerence from reference answers for this question\n )\n\n # Iterate over each emotion in the user's answers.\n for emotion, user_emotion_score in user.items():\n # If this emotion is in the reference, calculate the difference between the user's score and the reference score.\n for i in range(1, 5):\n if emotion == reference[f\"emotion{i}\"]:\n d = abs(\n float(user_emotion_score) - float(reference[f\"emotion{i}_score\"])\n )\n # this will be a value between 0 and 10\n if d == 0:\n scaled_difference = 0\n elif d <= 5:\n # S-shaped scaling function\n # https://www.desmos.com/calculator\n # 6.5\\cdot\\ \\frac{1}{\\left(1\\ +\\ e^{\\left(-1.2\\cdot\\left(x-4\\right)\\right)}\\right)}\n scaled_difference = 6.5 * (1 / (1 + math.e ** (-1.2 * (d - 4))))\n\n else:\n scaled_difference = d\n difference_tally += scaled_difference\n\n # Inverting the difference tally so that the closer the answer is to reference, the higher the score.\n # The adjustment constant is chosen such that answering randomly produces a score of zero.\n adjust_const = 0.7477\n final_score = 10 - (difference_tally * adjust_const)\n final_score_percent = final_score * 10\n\n return {\"eqbench\": final_score_percent, \"percent_parseable\": 100}\n",
30
+ "description": "",
31
+ "target_delimiter": " ",
32
+ "fewshot_delimiter": "\n\n",
33
+ "num_fewshot": 0,
34
+ "metric_list": [
35
+ {
36
+ "metric": "eqbench",
37
+ "aggregation": "mean",
38
+ "higher_is_better": true
39
+ },
40
+ {
41
+ "metric": "percent_parseable",
42
+ "aggregation": "mean",
43
+ "higher_is_better": true
44
+ }
45
+ ],
46
+ "output_type": "generate_until",
47
+ "generation_kwargs": {
48
+ "do_sample": false,
49
+ "temperature": 0.0,
50
+ "max_gen_toks": 80,
51
+ "until": [
52
+ "\n\n"
53
+ ]
54
+ },
55
+ "repeats": 1,
56
+ "should_decontaminate": false,
57
+ "metadata": {
58
+ "version": 2.1
59
+ }
60
+ },
61
+ "hellaswag": {
62
+ "task": "hellaswag",
63
+ "group": [
64
+ "multiple_choice"
65
+ ],
66
+ "dataset_path": "hellaswag",
67
+ "training_split": "train",
68
+ "validation_split": "validation",
69
+ "process_docs": "def process_docs(dataset: datasets.Dataset) -> datasets.Dataset:\n def _process_doc(doc):\n ctx = doc[\"ctx_a\"] + \" \" + doc[\"ctx_b\"].capitalize()\n out_doc = {\n \"query\": preprocess(doc[\"activity_label\"] + \": \" + ctx),\n \"choices\": [preprocess(ending) for ending in doc[\"endings\"]],\n \"gold\": int(doc[\"label\"]),\n }\n return out_doc\n\n return dataset.map(_process_doc)\n",
70
+ "doc_to_text": "{{query}}",
71
+ "doc_to_target": "{{label}}",
72
+ "doc_to_choice": "choices",
73
+ "description": "",
74
+ "target_delimiter": " ",
75
+ "fewshot_delimiter": "\n\n",
76
+ "num_fewshot": 0,
77
+ "metric_list": [
78
+ {
79
+ "metric": "acc",
80
+ "aggregation": "mean",
81
+ "higher_is_better": true
82
+ },
83
+ {
84
+ "metric": "acc_norm",
85
+ "aggregation": "mean",
86
+ "higher_is_better": true
87
+ }
88
+ ],
89
+ "output_type": "multiple_choice",
90
+ "repeats": 1,
91
+ "should_decontaminate": false,
92
+ "metadata": {
93
+ "version": 1.0
94
+ }
95
+ }
96
+ },
97
+ "versions": {
98
+ "eq_bench": 2.1,
99
+ "hellaswag": 1.0
100
+ },
101
+ "n-shot": {
102
+ "eq_bench": 0,
103
+ "hellaswag": 0
104
+ },
105
+ "higher_is_better": {
106
+ "eq_bench": {
107
+ "eqbench": true,
108
+ "percent_parseable": true
109
+ },
110
+ "hellaswag": {
111
+ "acc": true,
112
+ "acc_norm": true
113
+ }
114
+ },
115
+ "n-samples": {
116
+ "hellaswag": {
117
+ "original": 10042,
118
+ "effective": 10042
119
+ },
120
+ "eq_bench": {
121
+ "original": 171,
122
+ "effective": 171
123
+ }
124
+ },
125
+ "config": {
126
+ "model": "hf",
127
+ "model_args": "pretrained=Intel/neural-chat-7b-v3-1,trust_remote_code=True",
128
+ "model_num_parameters": 7241732096,
129
+ "model_dtype": "torch.float16",
130
+ "model_revision": "main",
131
+ "model_sha": "c0d379a49c1c0579529d5e6f2e936ddb759552a8",
132
+ "batch_size": "auto",
133
+ "batch_sizes": [
134
+ 64
135
+ ],
136
+ "device": null,
137
+ "use_cache": null,
138
+ "limit": null,
139
+ "bootstrap_iters": 100000,
140
+ "gen_kwargs": null,
141
+ "random_seed": 0,
142
+ "numpy_seed": 1234,
143
+ "torch_seed": 1234,
144
+ "fewshot_seed": 1234
145
+ },
146
+ "git_hash": null,
147
+ "date": 1719523797.1185606,
148
+ "pretty_env_info": "PyTorch version: 2.3.1+cu121\nIs debug build: False\nCUDA used to build PyTorch: 12.1\nROCM used to build PyTorch: N/A\n\nOS: Ubuntu 22.04.4 LTS (x86_64)\nGCC version: (Ubuntu 11.4.0-1ubuntu1~22.04) 11.4.0\nClang version: Could not collect\nCMake version: Could not collect\nLibc version: glibc-2.35\n\nPython version: 3.10.12 (main, Nov 20 2023, 15:14:05) [GCC 11.4.0] (64-bit runtime)\nPython platform: Linux-6.5.0-1022-gcp-x86_64-with-glibc2.35\nIs CUDA available: True\nCUDA runtime version: 12.1.105\nCUDA_MODULE_LOADING set to: LAZY\nGPU models and configuration: \nGPU 0: NVIDIA L4\nGPU 1: NVIDIA L4\n\nNvidia driver version: 555.42.02\ncuDNN version: Could not collect\nHIP runtime version: N/A\nMIOpen runtime version: N/A\nIs XNNPACK available: True\n\nCPU:\nArchitecture: x86_64\nCPU op-mode(s): 32-bit, 64-bit\nAddress sizes: 46 bits physical, 48 bits virtual\nByte Order: Little Endian\nCPU(s): 24\nOn-line CPU(s) list: 0-23\nVendor ID: GenuineIntel\nModel name: Intel(R) Xeon(R) CPU @ 2.20GHz\nCPU family: 6\nModel: 85\nThread(s) per core: 2\nCore(s) per socket: 12\nSocket(s): 1\nStepping: 7\nBogoMIPS: 4400.47\nFlags: fpu vme de pse tsc msr pae mce cx8 apic sep mtrr pge mca cmov pat pse36 clflush mmx fxsr sse sse2 ss ht syscall nx pdpe1gb rdtscp lm constant_tsc rep_good nopl xtopology nonstop_tsc cpuid tsc_known_freq pni pclmulqdq ssse3 fma cx16 pcid sse4_1 sse4_2 x2apic movbe popcnt aes xsave avx f16c rdrand hypervisor lahf_lm abm 3dnowprefetch invpcid_single ssbd ibrs ibpb stibp ibrs_enhanced fsgsbase tsc_adjust bmi1 hle avx2 smep bmi2 erms invpcid rtm mpx avx512f avx512dq rdseed adx smap clflushopt clwb avx512cd avx512bw avx512vl xsaveopt xsavec xgetbv1 xsaves arat avx512_vnni md_clear arch_capabilities\nHypervisor vendor: KVM\nVirtualization type: full\nL1d cache: 384 KiB (12 instances)\nL1i cache: 384 KiB (12 instances)\nL2 cache: 12 MiB (12 instances)\nL3 cache: 38.5 MiB (1 instance)\nNUMA node(s): 1\nNUMA node0 CPU(s): 0-23\nVulnerability Gather data sampling: Not affected\nVulnerability Itlb multihit: Not affected\nVulnerability L1tf: Not affected\nVulnerability Mds: Mitigation; Clear CPU buffers; SMT Host state unknown\nVulnerability Meltdown: Not affected\nVulnerability Mmio stale data: Vulnerable: Clear CPU buffers attempted, no microcode; SMT Host state unknown\nVulnerability Retbleed: Mitigation; Enhanced IBRS\nVulnerability Spec rstack overflow: Not affected\nVulnerability Spec store bypass: Mitigation; Speculative Store Bypass disabled via prctl\nVulnerability Spectre v1: Mitigation; usercopy/swapgs barriers and __user pointer sanitization\nVulnerability Spectre v2: Mitigation; Enhanced / Automatic IBRS; IBPB conditional; RSB filling; PBRSB-eIBRS SW sequence; BHI Syscall hardening, KVM SW loop\nVulnerability Srbds: Not affected\nVulnerability Tsx async abort: Mitigation; Clear CPU buffers; SMT Host state unknown\n\nVersions of relevant libraries:\n[pip3] numpy==2.0.0\n[pip3] torch==2.3.1\n[pip3] triton==2.3.1\n[conda] Could not collect",
149
+ "transformers_version": "4.41.2",
150
+ "upper_git_hash": null,
151
+ "tokenizer_pad_token": [
152
+ "<unk>",
153
+ 0
154
+ ],
155
+ "tokenizer_eos_token": [
156
+ "</s>",
157
+ 2
158
+ ],
159
+ "tokenizer_bos_token": [
160
+ "<s>",
161
+ 1
162
+ ],
163
+ "eot_token_id": 2,
164
+ "max_length": 32768,
165
+ "task_hashes": {},
166
+ "model_source": "hf",
167
+ "model_name": "Intel/neural-chat-7b-v3-1",
168
+ "model_name_sanitized": "Intel__neural-chat-7b-v3-1",
169
+ "system_instruction": null,
170
+ "system_instruction_sha": null,
171
+ "fewshot_as_multiturn": false,
172
+ "chat_template": null,
173
+ "chat_template_sha": null,
174
+ "start_time": 76180.270750278,
175
+ "end_time": 77745.57190531,
176
+ "total_evaluation_time_seconds": "1565.301155032008"
177
+ }
KoboldAI__Mistral-7B-Erebus-v3/results_2024-06-28T02-01-18.290687.json ADDED
@@ -0,0 +1,177 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "results": {
3
+ "hellaswag": {
4
+ "acc,none": 0.5837482573192591,
5
+ "acc_stderr,none": 0.0049192891130275095,
6
+ "acc_norm,none": 0.7665803624775941,
7
+ "acc_norm_stderr,none": 0.004221424792919153,
8
+ "alias": "hellaswag"
9
+ },
10
+ "eq_bench": {
11
+ "eqbench,none": 18.19761609584577,
12
+ "eqbench_stderr,none": 3.474273216617232,
13
+ "percent_parseable,none": 97.6608187134503,
14
+ "percent_parseable_stderr,none": 1.1592247905734945,
15
+ "alias": "eq_bench"
16
+ }
17
+ },
18
+ "group_subtasks": {
19
+ "eq_bench": [],
20
+ "hellaswag": []
21
+ },
22
+ "configs": {
23
+ "eq_bench": {
24
+ "task": "eq_bench",
25
+ "dataset_path": "pbevan11/EQ-Bench",
26
+ "validation_split": "validation",
27
+ "doc_to_text": "prompt",
28
+ "doc_to_target": "reference_answer_fullscale",
29
+ "process_results": "def calculate_score_fullscale(docs, results):\n reference = eval(docs[\"reference_answer_fullscale\"])\n user = dict(re.findall(r\"(\\w+):\\s+(\\d+)\", results[0]))\n # First check that the emotions specified in the answer match those in the reference\n if len(user.items()) != 4:\n # print('! Error: 4 emotions were not returned')\n # print(user)\n return {\"eqbench\": 0, \"percent_parseable\": 0}\n emotions_dict = {}\n for emotion, user_emotion_score in user.items():\n for i in range(1, 5):\n if emotion == reference[f\"emotion{i}\"]:\n emotions_dict[emotion] = True\n if len(emotions_dict) != 4:\n print(\"! Error: emotions did not match reference\")\n print(user)\n return {\"eqbench\": 0, \"percent_parseable\": 0}\n\n difference_tally = (\n 0 # Tally of differerence from reference answers for this question\n )\n\n # Iterate over each emotion in the user's answers.\n for emotion, user_emotion_score in user.items():\n # If this emotion is in the reference, calculate the difference between the user's score and the reference score.\n for i in range(1, 5):\n if emotion == reference[f\"emotion{i}\"]:\n d = abs(\n float(user_emotion_score) - float(reference[f\"emotion{i}_score\"])\n )\n # this will be a value between 0 and 10\n if d == 0:\n scaled_difference = 0\n elif d <= 5:\n # S-shaped scaling function\n # https://www.desmos.com/calculator\n # 6.5\\cdot\\ \\frac{1}{\\left(1\\ +\\ e^{\\left(-1.2\\cdot\\left(x-4\\right)\\right)}\\right)}\n scaled_difference = 6.5 * (1 / (1 + math.e ** (-1.2 * (d - 4))))\n\n else:\n scaled_difference = d\n difference_tally += scaled_difference\n\n # Inverting the difference tally so that the closer the answer is to reference, the higher the score.\n # The adjustment constant is chosen such that answering randomly produces a score of zero.\n adjust_const = 0.7477\n final_score = 10 - (difference_tally * adjust_const)\n final_score_percent = final_score * 10\n\n return {\"eqbench\": final_score_percent, \"percent_parseable\": 100}\n",
30
+ "description": "",
31
+ "target_delimiter": " ",
32
+ "fewshot_delimiter": "\n\n",
33
+ "num_fewshot": 0,
34
+ "metric_list": [
35
+ {
36
+ "metric": "eqbench",
37
+ "aggregation": "mean",
38
+ "higher_is_better": true
39
+ },
40
+ {
41
+ "metric": "percent_parseable",
42
+ "aggregation": "mean",
43
+ "higher_is_better": true
44
+ }
45
+ ],
46
+ "output_type": "generate_until",
47
+ "generation_kwargs": {
48
+ "do_sample": false,
49
+ "temperature": 0.0,
50
+ "max_gen_toks": 80,
51
+ "until": [
52
+ "\n\n"
53
+ ]
54
+ },
55
+ "repeats": 1,
56
+ "should_decontaminate": false,
57
+ "metadata": {
58
+ "version": 2.1
59
+ }
60
+ },
61
+ "hellaswag": {
62
+ "task": "hellaswag",
63
+ "group": [
64
+ "multiple_choice"
65
+ ],
66
+ "dataset_path": "hellaswag",
67
+ "training_split": "train",
68
+ "validation_split": "validation",
69
+ "process_docs": "def process_docs(dataset: datasets.Dataset) -> datasets.Dataset:\n def _process_doc(doc):\n ctx = doc[\"ctx_a\"] + \" \" + doc[\"ctx_b\"].capitalize()\n out_doc = {\n \"query\": preprocess(doc[\"activity_label\"] + \": \" + ctx),\n \"choices\": [preprocess(ending) for ending in doc[\"endings\"]],\n \"gold\": int(doc[\"label\"]),\n }\n return out_doc\n\n return dataset.map(_process_doc)\n",
70
+ "doc_to_text": "{{query}}",
71
+ "doc_to_target": "{{label}}",
72
+ "doc_to_choice": "choices",
73
+ "description": "",
74
+ "target_delimiter": " ",
75
+ "fewshot_delimiter": "\n\n",
76
+ "num_fewshot": 0,
77
+ "metric_list": [
78
+ {
79
+ "metric": "acc",
80
+ "aggregation": "mean",
81
+ "higher_is_better": true
82
+ },
83
+ {
84
+ "metric": "acc_norm",
85
+ "aggregation": "mean",
86
+ "higher_is_better": true
87
+ }
88
+ ],
89
+ "output_type": "multiple_choice",
90
+ "repeats": 1,
91
+ "should_decontaminate": false,
92
+ "metadata": {
93
+ "version": 1.0
94
+ }
95
+ }
96
+ },
97
+ "versions": {
98
+ "eq_bench": 2.1,
99
+ "hellaswag": 1.0
100
+ },
101
+ "n-shot": {
102
+ "eq_bench": 0,
103
+ "hellaswag": 0
104
+ },
105
+ "higher_is_better": {
106
+ "eq_bench": {
107
+ "eqbench": true,
108
+ "percent_parseable": true
109
+ },
110
+ "hellaswag": {
111
+ "acc": true,
112
+ "acc_norm": true
113
+ }
114
+ },
115
+ "n-samples": {
116
+ "hellaswag": {
117
+ "original": 10042,
118
+ "effective": 10042
119
+ },
120
+ "eq_bench": {
121
+ "original": 171,
122
+ "effective": 171
123
+ }
124
+ },
125
+ "config": {
126
+ "model": "hf",
127
+ "model_args": "pretrained=KoboldAI/Mistral-7B-Erebus-v3,trust_remote_code=True",
128
+ "model_num_parameters": 7241732096,
129
+ "model_dtype": "torch.float16",
130
+ "model_revision": "main",
131
+ "model_sha": "476c2eed031028f2fcfb9b8d0115b83363cec904",
132
+ "batch_size": "auto",
133
+ "batch_sizes": [
134
+ 64
135
+ ],
136
+ "device": null,
137
+ "use_cache": null,
138
+ "limit": null,
139
+ "bootstrap_iters": 100000,
140
+ "gen_kwargs": null,
141
+ "random_seed": 0,
142
+ "numpy_seed": 1234,
143
+ "torch_seed": 1234,
144
+ "fewshot_seed": 1234
145
+ },
146
+ "git_hash": null,
147
+ "date": 1719538494.5098195,
148
+ "pretty_env_info": "PyTorch version: 2.3.1+cu121\nIs debug build: False\nCUDA used to build PyTorch: 12.1\nROCM used to build PyTorch: N/A\n\nOS: Ubuntu 22.04.4 LTS (x86_64)\nGCC version: (Ubuntu 11.4.0-1ubuntu1~22.04) 11.4.0\nClang version: Could not collect\nCMake version: Could not collect\nLibc version: glibc-2.35\n\nPython version: 3.10.12 (main, Nov 20 2023, 15:14:05) [GCC 11.4.0] (64-bit runtime)\nPython platform: Linux-6.5.0-1022-gcp-x86_64-with-glibc2.35\nIs CUDA available: True\nCUDA runtime version: 12.1.105\nCUDA_MODULE_LOADING set to: LAZY\nGPU models and configuration: \nGPU 0: NVIDIA L4\nGPU 1: NVIDIA L4\n\nNvidia driver version: 555.42.02\ncuDNN version: Could not collect\nHIP runtime version: N/A\nMIOpen runtime version: N/A\nIs XNNPACK available: True\n\nCPU:\nArchitecture: x86_64\nCPU op-mode(s): 32-bit, 64-bit\nAddress sizes: 46 bits physical, 48 bits virtual\nByte Order: Little Endian\nCPU(s): 24\nOn-line CPU(s) list: 0-23\nVendor ID: GenuineIntel\nModel name: Intel(R) Xeon(R) CPU @ 2.20GHz\nCPU family: 6\nModel: 85\nThread(s) per core: 2\nCore(s) per socket: 12\nSocket(s): 1\nStepping: 7\nBogoMIPS: 4400.47\nFlags: fpu vme de pse tsc msr pae mce cx8 apic sep mtrr pge mca cmov pat pse36 clflush mmx fxsr sse sse2 ss ht syscall nx pdpe1gb rdtscp lm constant_tsc rep_good nopl xtopology nonstop_tsc cpuid tsc_known_freq pni pclmulqdq ssse3 fma cx16 pcid sse4_1 sse4_2 x2apic movbe popcnt aes xsave avx f16c rdrand hypervisor lahf_lm abm 3dnowprefetch invpcid_single ssbd ibrs ibpb stibp ibrs_enhanced fsgsbase tsc_adjust bmi1 hle avx2 smep bmi2 erms invpcid rtm mpx avx512f avx512dq rdseed adx smap clflushopt clwb avx512cd avx512bw avx512vl xsaveopt xsavec xgetbv1 xsaves arat avx512_vnni md_clear arch_capabilities\nHypervisor vendor: KVM\nVirtualization type: full\nL1d cache: 384 KiB (12 instances)\nL1i cache: 384 KiB (12 instances)\nL2 cache: 12 MiB (12 instances)\nL3 cache: 38.5 MiB (1 instance)\nNUMA node(s): 1\nNUMA node0 CPU(s): 0-23\nVulnerability Gather data sampling: Not affected\nVulnerability Itlb multihit: Not affected\nVulnerability L1tf: Not affected\nVulnerability Mds: Mitigation; Clear CPU buffers; SMT Host state unknown\nVulnerability Meltdown: Not affected\nVulnerability Mmio stale data: Vulnerable: Clear CPU buffers attempted, no microcode; SMT Host state unknown\nVulnerability Retbleed: Mitigation; Enhanced IBRS\nVulnerability Spec rstack overflow: Not affected\nVulnerability Spec store bypass: Mitigation; Speculative Store Bypass disabled via prctl\nVulnerability Spectre v1: Mitigation; usercopy/swapgs barriers and __user pointer sanitization\nVulnerability Spectre v2: Mitigation; Enhanced / Automatic IBRS; IBPB conditional; RSB filling; PBRSB-eIBRS SW sequence; BHI Syscall hardening, KVM SW loop\nVulnerability Srbds: Not affected\nVulnerability Tsx async abort: Mitigation; Clear CPU buffers; SMT Host state unknown\n\nVersions of relevant libraries:\n[pip3] numpy==2.0.0\n[pip3] torch==2.3.1\n[pip3] triton==2.3.1\n[conda] Could not collect",
149
+ "transformers_version": "4.41.2",
150
+ "upper_git_hash": null,
151
+ "tokenizer_pad_token": [
152
+ "<unk>",
153
+ 0
154
+ ],
155
+ "tokenizer_eos_token": [
156
+ "</s>",
157
+ 2
158
+ ],
159
+ "tokenizer_bos_token": [
160
+ "<s>",
161
+ 1
162
+ ],
163
+ "eot_token_id": 2,
164
+ "max_length": 32768,
165
+ "task_hashes": {},
166
+ "model_source": "hf",
167
+ "model_name": "KoboldAI/Mistral-7B-Erebus-v3",
168
+ "model_name_sanitized": "KoboldAI__Mistral-7B-Erebus-v3",
169
+ "system_instruction": null,
170
+ "system_instruction_sha": null,
171
+ "fewshot_as_multiturn": false,
172
+ "chat_template": null,
173
+ "chat_template_sha": null,
174
+ "start_time": 90877.776869387,
175
+ "end_time": 92468.355496828,
176
+ "total_evaluation_time_seconds": "1590.578627440991"
177
+ }
KoboldAI__Mistral-7B-Holodeck-1/results_2024-06-28T01-04-59.368025.json ADDED
@@ -0,0 +1,177 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "results": {
3
+ "hellaswag": {
4
+ "acc,none": 0.6026687910774746,
5
+ "acc_stderr,none": 0.004883455188908956,
6
+ "acc_norm,none": 0.7918741286596296,
7
+ "acc_norm_stderr,none": 0.0040513767194979506,
8
+ "alias": "hellaswag"
9
+ },
10
+ "eq_bench": {
11
+ "eqbench,none": 2.099910527905425,
12
+ "eqbench_stderr,none": 2.491702523648299,
13
+ "percent_parseable,none": 98.24561403508773,
14
+ "percent_parseable_stderr,none": 1.0069193740062292,
15
+ "alias": "eq_bench"
16
+ }
17
+ },
18
+ "group_subtasks": {
19
+ "eq_bench": [],
20
+ "hellaswag": []
21
+ },
22
+ "configs": {
23
+ "eq_bench": {
24
+ "task": "eq_bench",
25
+ "dataset_path": "pbevan11/EQ-Bench",
26
+ "validation_split": "validation",
27
+ "doc_to_text": "prompt",
28
+ "doc_to_target": "reference_answer_fullscale",
29
+ "process_results": "def calculate_score_fullscale(docs, results):\n reference = eval(docs[\"reference_answer_fullscale\"])\n user = dict(re.findall(r\"(\\w+):\\s+(\\d+)\", results[0]))\n # First check that the emotions specified in the answer match those in the reference\n if len(user.items()) != 4:\n # print('! Error: 4 emotions were not returned')\n # print(user)\n return {\"eqbench\": 0, \"percent_parseable\": 0}\n emotions_dict = {}\n for emotion, user_emotion_score in user.items():\n for i in range(1, 5):\n if emotion == reference[f\"emotion{i}\"]:\n emotions_dict[emotion] = True\n if len(emotions_dict) != 4:\n print(\"! Error: emotions did not match reference\")\n print(user)\n return {\"eqbench\": 0, \"percent_parseable\": 0}\n\n difference_tally = (\n 0 # Tally of differerence from reference answers for this question\n )\n\n # Iterate over each emotion in the user's answers.\n for emotion, user_emotion_score in user.items():\n # If this emotion is in the reference, calculate the difference between the user's score and the reference score.\n for i in range(1, 5):\n if emotion == reference[f\"emotion{i}\"]:\n d = abs(\n float(user_emotion_score) - float(reference[f\"emotion{i}_score\"])\n )\n # this will be a value between 0 and 10\n if d == 0:\n scaled_difference = 0\n elif d <= 5:\n # S-shaped scaling function\n # https://www.desmos.com/calculator\n # 6.5\\cdot\\ \\frac{1}{\\left(1\\ +\\ e^{\\left(-1.2\\cdot\\left(x-4\\right)\\right)}\\right)}\n scaled_difference = 6.5 * (1 / (1 + math.e ** (-1.2 * (d - 4))))\n\n else:\n scaled_difference = d\n difference_tally += scaled_difference\n\n # Inverting the difference tally so that the closer the answer is to reference, the higher the score.\n # The adjustment constant is chosen such that answering randomly produces a score of zero.\n adjust_const = 0.7477\n final_score = 10 - (difference_tally * adjust_const)\n final_score_percent = final_score * 10\n\n return {\"eqbench\": final_score_percent, \"percent_parseable\": 100}\n",
30
+ "description": "",
31
+ "target_delimiter": " ",
32
+ "fewshot_delimiter": "\n\n",
33
+ "num_fewshot": 0,
34
+ "metric_list": [
35
+ {
36
+ "metric": "eqbench",
37
+ "aggregation": "mean",
38
+ "higher_is_better": true
39
+ },
40
+ {
41
+ "metric": "percent_parseable",
42
+ "aggregation": "mean",
43
+ "higher_is_better": true
44
+ }
45
+ ],
46
+ "output_type": "generate_until",
47
+ "generation_kwargs": {
48
+ "do_sample": false,
49
+ "temperature": 0.0,
50
+ "max_gen_toks": 80,
51
+ "until": [
52
+ "\n\n"
53
+ ]
54
+ },
55
+ "repeats": 1,
56
+ "should_decontaminate": false,
57
+ "metadata": {
58
+ "version": 2.1
59
+ }
60
+ },
61
+ "hellaswag": {
62
+ "task": "hellaswag",
63
+ "group": [
64
+ "multiple_choice"
65
+ ],
66
+ "dataset_path": "hellaswag",
67
+ "training_split": "train",
68
+ "validation_split": "validation",
69
+ "process_docs": "def process_docs(dataset: datasets.Dataset) -> datasets.Dataset:\n def _process_doc(doc):\n ctx = doc[\"ctx_a\"] + \" \" + doc[\"ctx_b\"].capitalize()\n out_doc = {\n \"query\": preprocess(doc[\"activity_label\"] + \": \" + ctx),\n \"choices\": [preprocess(ending) for ending in doc[\"endings\"]],\n \"gold\": int(doc[\"label\"]),\n }\n return out_doc\n\n return dataset.map(_process_doc)\n",
70
+ "doc_to_text": "{{query}}",
71
+ "doc_to_target": "{{label}}",
72
+ "doc_to_choice": "choices",
73
+ "description": "",
74
+ "target_delimiter": " ",
75
+ "fewshot_delimiter": "\n\n",
76
+ "num_fewshot": 0,
77
+ "metric_list": [
78
+ {
79
+ "metric": "acc",
80
+ "aggregation": "mean",
81
+ "higher_is_better": true
82
+ },
83
+ {
84
+ "metric": "acc_norm",
85
+ "aggregation": "mean",
86
+ "higher_is_better": true
87
+ }
88
+ ],
89
+ "output_type": "multiple_choice",
90
+ "repeats": 1,
91
+ "should_decontaminate": false,
92
+ "metadata": {
93
+ "version": 1.0
94
+ }
95
+ }
96
+ },
97
+ "versions": {
98
+ "eq_bench": 2.1,
99
+ "hellaswag": 1.0
100
+ },
101
+ "n-shot": {
102
+ "eq_bench": 0,
103
+ "hellaswag": 0
104
+ },
105
+ "higher_is_better": {
106
+ "eq_bench": {
107
+ "eqbench": true,
108
+ "percent_parseable": true
109
+ },
110
+ "hellaswag": {
111
+ "acc": true,
112
+ "acc_norm": true
113
+ }
114
+ },
115
+ "n-samples": {
116
+ "hellaswag": {
117
+ "original": 10042,
118
+ "effective": 10042
119
+ },
120
+ "eq_bench": {
121
+ "original": 171,
122
+ "effective": 171
123
+ }
124
+ },
125
+ "config": {
126
+ "model": "hf",
127
+ "model_args": "pretrained=KoboldAI/Mistral-7B-Holodeck-1,trust_remote_code=True",
128
+ "model_num_parameters": 7241732096,
129
+ "model_dtype": "torch.float16",
130
+ "model_revision": "main",
131
+ "model_sha": "76057cc5c1923921162133c81ae7ca0e92755810",
132
+ "batch_size": "auto",
133
+ "batch_sizes": [
134
+ 64
135
+ ],
136
+ "device": null,
137
+ "use_cache": null,
138
+ "limit": null,
139
+ "bootstrap_iters": 100000,
140
+ "gen_kwargs": null,
141
+ "random_seed": 0,
142
+ "numpy_seed": 1234,
143
+ "torch_seed": 1234,
144
+ "fewshot_seed": 1234
145
+ },
146
+ "git_hash": null,
147
+ "date": 1719535119.7065547,
148
+ "pretty_env_info": "PyTorch version: 2.3.1+cu121\nIs debug build: False\nCUDA used to build PyTorch: 12.1\nROCM used to build PyTorch: N/A\n\nOS: Ubuntu 22.04.4 LTS (x86_64)\nGCC version: (Ubuntu 11.4.0-1ubuntu1~22.04) 11.4.0\nClang version: Could not collect\nCMake version: Could not collect\nLibc version: glibc-2.35\n\nPython version: 3.10.12 (main, Nov 20 2023, 15:14:05) [GCC 11.4.0] (64-bit runtime)\nPython platform: Linux-6.5.0-1022-gcp-x86_64-with-glibc2.35\nIs CUDA available: True\nCUDA runtime version: 12.1.105\nCUDA_MODULE_LOADING set to: LAZY\nGPU models and configuration: \nGPU 0: NVIDIA L4\nGPU 1: NVIDIA L4\n\nNvidia driver version: 555.42.02\ncuDNN version: Could not collect\nHIP runtime version: N/A\nMIOpen runtime version: N/A\nIs XNNPACK available: True\n\nCPU:\nArchitecture: x86_64\nCPU op-mode(s): 32-bit, 64-bit\nAddress sizes: 46 bits physical, 48 bits virtual\nByte Order: Little Endian\nCPU(s): 24\nOn-line CPU(s) list: 0-23\nVendor ID: GenuineIntel\nModel name: Intel(R) Xeon(R) CPU @ 2.20GHz\nCPU family: 6\nModel: 85\nThread(s) per core: 2\nCore(s) per socket: 12\nSocket(s): 1\nStepping: 7\nBogoMIPS: 4400.47\nFlags: fpu vme de pse tsc msr pae mce cx8 apic sep mtrr pge mca cmov pat pse36 clflush mmx fxsr sse sse2 ss ht syscall nx pdpe1gb rdtscp lm constant_tsc rep_good nopl xtopology nonstop_tsc cpuid tsc_known_freq pni pclmulqdq ssse3 fma cx16 pcid sse4_1 sse4_2 x2apic movbe popcnt aes xsave avx f16c rdrand hypervisor lahf_lm abm 3dnowprefetch invpcid_single ssbd ibrs ibpb stibp ibrs_enhanced fsgsbase tsc_adjust bmi1 hle avx2 smep bmi2 erms invpcid rtm mpx avx512f avx512dq rdseed adx smap clflushopt clwb avx512cd avx512bw avx512vl xsaveopt xsavec xgetbv1 xsaves arat avx512_vnni md_clear arch_capabilities\nHypervisor vendor: KVM\nVirtualization type: full\nL1d cache: 384 KiB (12 instances)\nL1i cache: 384 KiB (12 instances)\nL2 cache: 12 MiB (12 instances)\nL3 cache: 38.5 MiB (1 instance)\nNUMA node(s): 1\nNUMA node0 CPU(s): 0-23\nVulnerability Gather data sampling: Not affected\nVulnerability Itlb multihit: Not affected\nVulnerability L1tf: Not affected\nVulnerability Mds: Mitigation; Clear CPU buffers; SMT Host state unknown\nVulnerability Meltdown: Not affected\nVulnerability Mmio stale data: Vulnerable: Clear CPU buffers attempted, no microcode; SMT Host state unknown\nVulnerability Retbleed: Mitigation; Enhanced IBRS\nVulnerability Spec rstack overflow: Not affected\nVulnerability Spec store bypass: Mitigation; Speculative Store Bypass disabled via prctl\nVulnerability Spectre v1: Mitigation; usercopy/swapgs barriers and __user pointer sanitization\nVulnerability Spectre v2: Mitigation; Enhanced / Automatic IBRS; IBPB conditional; RSB filling; PBRSB-eIBRS SW sequence; BHI Syscall hardening, KVM SW loop\nVulnerability Srbds: Not affected\nVulnerability Tsx async abort: Mitigation; Clear CPU buffers; SMT Host state unknown\n\nVersions of relevant libraries:\n[pip3] numpy==2.0.0\n[pip3] torch==2.3.1\n[pip3] triton==2.3.1\n[conda] Could not collect",
149
+ "transformers_version": "4.41.2",
150
+ "upper_git_hash": null,
151
+ "tokenizer_pad_token": [
152
+ "<unk>",
153
+ 0
154
+ ],
155
+ "tokenizer_eos_token": [
156
+ "</s>",
157
+ 2
158
+ ],
159
+ "tokenizer_bos_token": [
160
+ "<s>",
161
+ 1
162
+ ],
163
+ "eot_token_id": 2,
164
+ "max_length": 32768,
165
+ "task_hashes": {},
166
+ "model_source": "hf",
167
+ "model_name": "KoboldAI/Mistral-7B-Holodeck-1",
168
+ "model_name_sanitized": "KoboldAI__Mistral-7B-Holodeck-1",
169
+ "system_instruction": null,
170
+ "system_instruction_sha": null,
171
+ "fewshot_as_multiturn": false,
172
+ "chat_template": null,
173
+ "chat_template_sha": null,
174
+ "start_time": 87502.926965946,
175
+ "end_time": 89089.432844292,
176
+ "total_evaluation_time_seconds": "1586.5058783459972"
177
+ }
NousResearch__Hermes-2-Pro-Mistral-7B/results_2024-06-28T00-36-44.931474.json ADDED
@@ -0,0 +1,177 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "results": {
3
+ "hellaswag": {
4
+ "acc,none": 0.6267675761800439,
5
+ "acc_stderr,none": 0.004826746160830164,
6
+ "acc_norm,none": 0.8055168293168692,
7
+ "acc_norm_stderr,none": 0.003949933997955457,
8
+ "alias": "hellaswag"
9
+ },
10
+ "eq_bench": {
11
+ "eqbench,none": 65.92538496559615,
12
+ "eqbench_stderr,none": 2.278499695256187,
13
+ "percent_parseable,none": 100.0,
14
+ "percent_parseable_stderr,none": 0.0,
15
+ "alias": "eq_bench"
16
+ }
17
+ },
18
+ "group_subtasks": {
19
+ "eq_bench": [],
20
+ "hellaswag": []
21
+ },
22
+ "configs": {
23
+ "eq_bench": {
24
+ "task": "eq_bench",
25
+ "dataset_path": "pbevan11/EQ-Bench",
26
+ "validation_split": "validation",
27
+ "doc_to_text": "prompt",
28
+ "doc_to_target": "reference_answer_fullscale",
29
+ "process_results": "def calculate_score_fullscale(docs, results):\n reference = eval(docs[\"reference_answer_fullscale\"])\n user = dict(re.findall(r\"(\\w+):\\s+(\\d+)\", results[0]))\n # First check that the emotions specified in the answer match those in the reference\n if len(user.items()) != 4:\n # print('! Error: 4 emotions were not returned')\n # print(user)\n return {\"eqbench\": 0, \"percent_parseable\": 0}\n emotions_dict = {}\n for emotion, user_emotion_score in user.items():\n for i in range(1, 5):\n if emotion == reference[f\"emotion{i}\"]:\n emotions_dict[emotion] = True\n if len(emotions_dict) != 4:\n print(\"! Error: emotions did not match reference\")\n print(user)\n return {\"eqbench\": 0, \"percent_parseable\": 0}\n\n difference_tally = (\n 0 # Tally of differerence from reference answers for this question\n )\n\n # Iterate over each emotion in the user's answers.\n for emotion, user_emotion_score in user.items():\n # If this emotion is in the reference, calculate the difference between the user's score and the reference score.\n for i in range(1, 5):\n if emotion == reference[f\"emotion{i}\"]:\n d = abs(\n float(user_emotion_score) - float(reference[f\"emotion{i}_score\"])\n )\n # this will be a value between 0 and 10\n if d == 0:\n scaled_difference = 0\n elif d <= 5:\n # S-shaped scaling function\n # https://www.desmos.com/calculator\n # 6.5\\cdot\\ \\frac{1}{\\left(1\\ +\\ e^{\\left(-1.2\\cdot\\left(x-4\\right)\\right)}\\right)}\n scaled_difference = 6.5 * (1 / (1 + math.e ** (-1.2 * (d - 4))))\n\n else:\n scaled_difference = d\n difference_tally += scaled_difference\n\n # Inverting the difference tally so that the closer the answer is to reference, the higher the score.\n # The adjustment constant is chosen such that answering randomly produces a score of zero.\n adjust_const = 0.7477\n final_score = 10 - (difference_tally * adjust_const)\n final_score_percent = final_score * 10\n\n return {\"eqbench\": final_score_percent, \"percent_parseable\": 100}\n",
30
+ "description": "",
31
+ "target_delimiter": " ",
32
+ "fewshot_delimiter": "\n\n",
33
+ "num_fewshot": 0,
34
+ "metric_list": [
35
+ {
36
+ "metric": "eqbench",
37
+ "aggregation": "mean",
38
+ "higher_is_better": true
39
+ },
40
+ {
41
+ "metric": "percent_parseable",
42
+ "aggregation": "mean",
43
+ "higher_is_better": true
44
+ }
45
+ ],
46
+ "output_type": "generate_until",
47
+ "generation_kwargs": {
48
+ "do_sample": false,
49
+ "temperature": 0.0,
50
+ "max_gen_toks": 80,
51
+ "until": [
52
+ "\n\n"
53
+ ]
54
+ },
55
+ "repeats": 1,
56
+ "should_decontaminate": false,
57
+ "metadata": {
58
+ "version": 2.1
59
+ }
60
+ },
61
+ "hellaswag": {
62
+ "task": "hellaswag",
63
+ "group": [
64
+ "multiple_choice"
65
+ ],
66
+ "dataset_path": "hellaswag",
67
+ "training_split": "train",
68
+ "validation_split": "validation",
69
+ "process_docs": "def process_docs(dataset: datasets.Dataset) -> datasets.Dataset:\n def _process_doc(doc):\n ctx = doc[\"ctx_a\"] + \" \" + doc[\"ctx_b\"].capitalize()\n out_doc = {\n \"query\": preprocess(doc[\"activity_label\"] + \": \" + ctx),\n \"choices\": [preprocess(ending) for ending in doc[\"endings\"]],\n \"gold\": int(doc[\"label\"]),\n }\n return out_doc\n\n return dataset.map(_process_doc)\n",
70
+ "doc_to_text": "{{query}}",
71
+ "doc_to_target": "{{label}}",
72
+ "doc_to_choice": "choices",
73
+ "description": "",
74
+ "target_delimiter": " ",
75
+ "fewshot_delimiter": "\n\n",
76
+ "num_fewshot": 0,
77
+ "metric_list": [
78
+ {
79
+ "metric": "acc",
80
+ "aggregation": "mean",
81
+ "higher_is_better": true
82
+ },
83
+ {
84
+ "metric": "acc_norm",
85
+ "aggregation": "mean",
86
+ "higher_is_better": true
87
+ }
88
+ ],
89
+ "output_type": "multiple_choice",
90
+ "repeats": 1,
91
+ "should_decontaminate": false,
92
+ "metadata": {
93
+ "version": 1.0
94
+ }
95
+ }
96
+ },
97
+ "versions": {
98
+ "eq_bench": 2.1,
99
+ "hellaswag": 1.0
100
+ },
101
+ "n-shot": {
102
+ "eq_bench": 0,
103
+ "hellaswag": 0
104
+ },
105
+ "higher_is_better": {
106
+ "eq_bench": {
107
+ "eqbench": true,
108
+ "percent_parseable": true
109
+ },
110
+ "hellaswag": {
111
+ "acc": true,
112
+ "acc_norm": true
113
+ }
114
+ },
115
+ "n-samples": {
116
+ "hellaswag": {
117
+ "original": 10042,
118
+ "effective": 10042
119
+ },
120
+ "eq_bench": {
121
+ "original": 171,
122
+ "effective": 171
123
+ }
124
+ },
125
+ "config": {
126
+ "model": "hf",
127
+ "model_args": "pretrained=NousResearch/Hermes-2-Pro-Mistral-7B,trust_remote_code=True",
128
+ "model_num_parameters": 7241994240,
129
+ "model_dtype": "torch.bfloat16",
130
+ "model_revision": "main",
131
+ "model_sha": "09317b1d8da639b5d9af77c06aa17cde0f0f91c0",
132
+ "batch_size": "auto",
133
+ "batch_sizes": [
134
+ 64
135
+ ],
136
+ "device": null,
137
+ "use_cache": null,
138
+ "limit": null,
139
+ "bootstrap_iters": 100000,
140
+ "gen_kwargs": null,
141
+ "random_seed": 0,
142
+ "numpy_seed": 1234,
143
+ "torch_seed": 1234,
144
+ "fewshot_seed": 1234
145
+ },
146
+ "git_hash": null,
147
+ "date": 1719533491.7175071,
148
+ "pretty_env_info": "PyTorch version: 2.3.1+cu121\nIs debug build: False\nCUDA used to build PyTorch: 12.1\nROCM used to build PyTorch: N/A\n\nOS: Ubuntu 22.04.4 LTS (x86_64)\nGCC version: (Ubuntu 11.4.0-1ubuntu1~22.04) 11.4.0\nClang version: Could not collect\nCMake version: Could not collect\nLibc version: glibc-2.35\n\nPython version: 3.10.12 (main, Nov 20 2023, 15:14:05) [GCC 11.4.0] (64-bit runtime)\nPython platform: Linux-6.5.0-1022-gcp-x86_64-with-glibc2.35\nIs CUDA available: True\nCUDA runtime version: 12.1.105\nCUDA_MODULE_LOADING set to: LAZY\nGPU models and configuration: \nGPU 0: NVIDIA L4\nGPU 1: NVIDIA L4\n\nNvidia driver version: 555.42.02\ncuDNN version: Could not collect\nHIP runtime version: N/A\nMIOpen runtime version: N/A\nIs XNNPACK available: True\n\nCPU:\nArchitecture: x86_64\nCPU op-mode(s): 32-bit, 64-bit\nAddress sizes: 46 bits physical, 48 bits virtual\nByte Order: Little Endian\nCPU(s): 24\nOn-line CPU(s) list: 0-23\nVendor ID: GenuineIntel\nModel name: Intel(R) Xeon(R) CPU @ 2.20GHz\nCPU family: 6\nModel: 85\nThread(s) per core: 2\nCore(s) per socket: 12\nSocket(s): 1\nStepping: 7\nBogoMIPS: 4400.47\nFlags: fpu vme de pse tsc msr pae mce cx8 apic sep mtrr pge mca cmov pat pse36 clflush mmx fxsr sse sse2 ss ht syscall nx pdpe1gb rdtscp lm constant_tsc rep_good nopl xtopology nonstop_tsc cpuid tsc_known_freq pni pclmulqdq ssse3 fma cx16 pcid sse4_1 sse4_2 x2apic movbe popcnt aes xsave avx f16c rdrand hypervisor lahf_lm abm 3dnowprefetch invpcid_single ssbd ibrs ibpb stibp ibrs_enhanced fsgsbase tsc_adjust bmi1 hle avx2 smep bmi2 erms invpcid rtm mpx avx512f avx512dq rdseed adx smap clflushopt clwb avx512cd avx512bw avx512vl xsaveopt xsavec xgetbv1 xsaves arat avx512_vnni md_clear arch_capabilities\nHypervisor vendor: KVM\nVirtualization type: full\nL1d cache: 384 KiB (12 instances)\nL1i cache: 384 KiB (12 instances)\nL2 cache: 12 MiB (12 instances)\nL3 cache: 38.5 MiB (1 instance)\nNUMA node(s): 1\nNUMA node0 CPU(s): 0-23\nVulnerability Gather data sampling: Not affected\nVulnerability Itlb multihit: Not affected\nVulnerability L1tf: Not affected\nVulnerability Mds: Mitigation; Clear CPU buffers; SMT Host state unknown\nVulnerability Meltdown: Not affected\nVulnerability Mmio stale data: Vulnerable: Clear CPU buffers attempted, no microcode; SMT Host state unknown\nVulnerability Retbleed: Mitigation; Enhanced IBRS\nVulnerability Spec rstack overflow: Not affected\nVulnerability Spec store bypass: Mitigation; Speculative Store Bypass disabled via prctl\nVulnerability Spectre v1: Mitigation; usercopy/swapgs barriers and __user pointer sanitization\nVulnerability Spectre v2: Mitigation; Enhanced / Automatic IBRS; IBPB conditional; RSB filling; PBRSB-eIBRS SW sequence; BHI Syscall hardening, KVM SW loop\nVulnerability Srbds: Not affected\nVulnerability Tsx async abort: Mitigation; Clear CPU buffers; SMT Host state unknown\n\nVersions of relevant libraries:\n[pip3] numpy==2.0.0\n[pip3] torch==2.3.1\n[pip3] triton==2.3.1\n[conda] Could not collect",
149
+ "transformers_version": "4.41.2",
150
+ "upper_git_hash": null,
151
+ "tokenizer_pad_token": [
152
+ "</s>",
153
+ 2
154
+ ],
155
+ "tokenizer_eos_token": [
156
+ "<|im_end|>",
157
+ 32000
158
+ ],
159
+ "tokenizer_bos_token": [
160
+ "<s>",
161
+ 1
162
+ ],
163
+ "eot_token_id": 32000,
164
+ "max_length": 32768,
165
+ "task_hashes": {},
166
+ "model_source": "hf",
167
+ "model_name": "NousResearch/Hermes-2-Pro-Mistral-7B",
168
+ "model_name_sanitized": "NousResearch__Hermes-2-Pro-Mistral-7B",
169
+ "system_instruction": null,
170
+ "system_instruction_sha": null,
171
+ "fewshot_as_multiturn": false,
172
+ "chat_template": null,
173
+ "chat_template_sha": null,
174
+ "start_time": 85874.893829605,
175
+ "end_time": 87394.996271898,
176
+ "total_evaluation_time_seconds": "1520.1024422929913"
177
+ }
Open-Orca__Mistral-7B-OpenOrca/results_2024-06-27T21-00-54.306241.json ADDED
@@ -0,0 +1,177 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "results": {
3
+ "hellaswag": {
4
+ "acc,none": 0.6379207329217288,
5
+ "acc_stderr,none": 0.004796193584930065,
6
+ "acc_norm,none": 0.8166699860585541,
7
+ "acc_norm_stderr,none": 0.0038614605262315377,
8
+ "alias": "hellaswag"
9
+ },
10
+ "eq_bench": {
11
+ "eqbench,none": 63.978950638437865,
12
+ "eqbench_stderr,none": 2.3824356593314344,
13
+ "percent_parseable,none": 99.41520467836257,
14
+ "percent_parseable_stderr,none": 0.5847953216374284,
15
+ "alias": "eq_bench"
16
+ }
17
+ },
18
+ "group_subtasks": {
19
+ "eq_bench": [],
20
+ "hellaswag": []
21
+ },
22
+ "configs": {
23
+ "eq_bench": {
24
+ "task": "eq_bench",
25
+ "dataset_path": "pbevan11/EQ-Bench",
26
+ "validation_split": "validation",
27
+ "doc_to_text": "prompt",
28
+ "doc_to_target": "reference_answer_fullscale",
29
+ "process_results": "def calculate_score_fullscale(docs, results):\n reference = eval(docs[\"reference_answer_fullscale\"])\n user = dict(re.findall(r\"(\\w+):\\s+(\\d+)\", results[0]))\n # First check that the emotions specified in the answer match those in the reference\n if len(user.items()) != 4:\n # print('! Error: 4 emotions were not returned')\n # print(user)\n return {\"eqbench\": 0, \"percent_parseable\": 0}\n emotions_dict = {}\n for emotion, user_emotion_score in user.items():\n for i in range(1, 5):\n if emotion == reference[f\"emotion{i}\"]:\n emotions_dict[emotion] = True\n if len(emotions_dict) != 4:\n print(\"! Error: emotions did not match reference\")\n print(user)\n return {\"eqbench\": 0, \"percent_parseable\": 0}\n\n difference_tally = (\n 0 # Tally of differerence from reference answers for this question\n )\n\n # Iterate over each emotion in the user's answers.\n for emotion, user_emotion_score in user.items():\n # If this emotion is in the reference, calculate the difference between the user's score and the reference score.\n for i in range(1, 5):\n if emotion == reference[f\"emotion{i}\"]:\n d = abs(\n float(user_emotion_score) - float(reference[f\"emotion{i}_score\"])\n )\n # this will be a value between 0 and 10\n if d == 0:\n scaled_difference = 0\n elif d <= 5:\n # S-shaped scaling function\n # https://www.desmos.com/calculator\n # 6.5\\cdot\\ \\frac{1}{\\left(1\\ +\\ e^{\\left(-1.2\\cdot\\left(x-4\\right)\\right)}\\right)}\n scaled_difference = 6.5 * (1 / (1 + math.e ** (-1.2 * (d - 4))))\n\n else:\n scaled_difference = d\n difference_tally += scaled_difference\n\n # Inverting the difference tally so that the closer the answer is to reference, the higher the score.\n # The adjustment constant is chosen such that answering randomly produces a score of zero.\n adjust_const = 0.7477\n final_score = 10 - (difference_tally * adjust_const)\n final_score_percent = final_score * 10\n\n return {\"eqbench\": final_score_percent, \"percent_parseable\": 100}\n",
30
+ "description": "",
31
+ "target_delimiter": " ",
32
+ "fewshot_delimiter": "\n\n",
33
+ "num_fewshot": 0,
34
+ "metric_list": [
35
+ {
36
+ "metric": "eqbench",
37
+ "aggregation": "mean",
38
+ "higher_is_better": true
39
+ },
40
+ {
41
+ "metric": "percent_parseable",
42
+ "aggregation": "mean",
43
+ "higher_is_better": true
44
+ }
45
+ ],
46
+ "output_type": "generate_until",
47
+ "generation_kwargs": {
48
+ "do_sample": false,
49
+ "temperature": 0.0,
50
+ "max_gen_toks": 80,
51
+ "until": [
52
+ "\n\n"
53
+ ]
54
+ },
55
+ "repeats": 1,
56
+ "should_decontaminate": false,
57
+ "metadata": {
58
+ "version": 2.1
59
+ }
60
+ },
61
+ "hellaswag": {
62
+ "task": "hellaswag",
63
+ "group": [
64
+ "multiple_choice"
65
+ ],
66
+ "dataset_path": "hellaswag",
67
+ "training_split": "train",
68
+ "validation_split": "validation",
69
+ "process_docs": "def process_docs(dataset: datasets.Dataset) -> datasets.Dataset:\n def _process_doc(doc):\n ctx = doc[\"ctx_a\"] + \" \" + doc[\"ctx_b\"].capitalize()\n out_doc = {\n \"query\": preprocess(doc[\"activity_label\"] + \": \" + ctx),\n \"choices\": [preprocess(ending) for ending in doc[\"endings\"]],\n \"gold\": int(doc[\"label\"]),\n }\n return out_doc\n\n return dataset.map(_process_doc)\n",
70
+ "doc_to_text": "{{query}}",
71
+ "doc_to_target": "{{label}}",
72
+ "doc_to_choice": "choices",
73
+ "description": "",
74
+ "target_delimiter": " ",
75
+ "fewshot_delimiter": "\n\n",
76
+ "num_fewshot": 0,
77
+ "metric_list": [
78
+ {
79
+ "metric": "acc",
80
+ "aggregation": "mean",
81
+ "higher_is_better": true
82
+ },
83
+ {
84
+ "metric": "acc_norm",
85
+ "aggregation": "mean",
86
+ "higher_is_better": true
87
+ }
88
+ ],
89
+ "output_type": "multiple_choice",
90
+ "repeats": 1,
91
+ "should_decontaminate": false,
92
+ "metadata": {
93
+ "version": 1.0
94
+ }
95
+ }
96
+ },
97
+ "versions": {
98
+ "eq_bench": 2.1,
99
+ "hellaswag": 1.0
100
+ },
101
+ "n-shot": {
102
+ "eq_bench": 0,
103
+ "hellaswag": 0
104
+ },
105
+ "higher_is_better": {
106
+ "eq_bench": {
107
+ "eqbench": true,
108
+ "percent_parseable": true
109
+ },
110
+ "hellaswag": {
111
+ "acc": true,
112
+ "acc_norm": true
113
+ }
114
+ },
115
+ "n-samples": {
116
+ "hellaswag": {
117
+ "original": 10042,
118
+ "effective": 10042
119
+ },
120
+ "eq_bench": {
121
+ "original": 171,
122
+ "effective": 171
123
+ }
124
+ },
125
+ "config": {
126
+ "model": "hf",
127
+ "model_args": "pretrained=Open-Orca/Mistral-7B-OpenOrca,trust_remote_code=True",
128
+ "model_num_parameters": 7241748480,
129
+ "model_dtype": "torch.bfloat16",
130
+ "model_revision": "main",
131
+ "model_sha": "4a37328cef00f524d3791b1c0cc559a3cc6af14d",
132
+ "batch_size": "auto",
133
+ "batch_sizes": [
134
+ 64
135
+ ],
136
+ "device": null,
137
+ "use_cache": null,
138
+ "limit": null,
139
+ "bootstrap_iters": 100000,
140
+ "gen_kwargs": null,
141
+ "random_seed": 0,
142
+ "numpy_seed": 1234,
143
+ "torch_seed": 1234,
144
+ "fewshot_seed": 1234
145
+ },
146
+ "git_hash": null,
147
+ "date": 1719520557.5287726,
148
+ "pretty_env_info": "PyTorch version: 2.3.1+cu121\nIs debug build: False\nCUDA used to build PyTorch: 12.1\nROCM used to build PyTorch: N/A\n\nOS: Ubuntu 22.04.4 LTS (x86_64)\nGCC version: (Ubuntu 11.4.0-1ubuntu1~22.04) 11.4.0\nClang version: Could not collect\nCMake version: Could not collect\nLibc version: glibc-2.35\n\nPython version: 3.10.12 (main, Nov 20 2023, 15:14:05) [GCC 11.4.0] (64-bit runtime)\nPython platform: Linux-6.5.0-1022-gcp-x86_64-with-glibc2.35\nIs CUDA available: True\nCUDA runtime version: 12.1.105\nCUDA_MODULE_LOADING set to: LAZY\nGPU models and configuration: \nGPU 0: NVIDIA L4\nGPU 1: NVIDIA L4\n\nNvidia driver version: 555.42.02\ncuDNN version: Could not collect\nHIP runtime version: N/A\nMIOpen runtime version: N/A\nIs XNNPACK available: True\n\nCPU:\nArchitecture: x86_64\nCPU op-mode(s): 32-bit, 64-bit\nAddress sizes: 46 bits physical, 48 bits virtual\nByte Order: Little Endian\nCPU(s): 24\nOn-line CPU(s) list: 0-23\nVendor ID: GenuineIntel\nModel name: Intel(R) Xeon(R) CPU @ 2.20GHz\nCPU family: 6\nModel: 85\nThread(s) per core: 2\nCore(s) per socket: 12\nSocket(s): 1\nStepping: 7\nBogoMIPS: 4400.47\nFlags: fpu vme de pse tsc msr pae mce cx8 apic sep mtrr pge mca cmov pat pse36 clflush mmx fxsr sse sse2 ss ht syscall nx pdpe1gb rdtscp lm constant_tsc rep_good nopl xtopology nonstop_tsc cpuid tsc_known_freq pni pclmulqdq ssse3 fma cx16 pcid sse4_1 sse4_2 x2apic movbe popcnt aes xsave avx f16c rdrand hypervisor lahf_lm abm 3dnowprefetch invpcid_single ssbd ibrs ibpb stibp ibrs_enhanced fsgsbase tsc_adjust bmi1 hle avx2 smep bmi2 erms invpcid rtm mpx avx512f avx512dq rdseed adx smap clflushopt clwb avx512cd avx512bw avx512vl xsaveopt xsavec xgetbv1 xsaves arat avx512_vnni md_clear arch_capabilities\nHypervisor vendor: KVM\nVirtualization type: full\nL1d cache: 384 KiB (12 instances)\nL1i cache: 384 KiB (12 instances)\nL2 cache: 12 MiB (12 instances)\nL3 cache: 38.5 MiB (1 instance)\nNUMA node(s): 1\nNUMA node0 CPU(s): 0-23\nVulnerability Gather data sampling: Not affected\nVulnerability Itlb multihit: Not affected\nVulnerability L1tf: Not affected\nVulnerability Mds: Mitigation; Clear CPU buffers; SMT Host state unknown\nVulnerability Meltdown: Not affected\nVulnerability Mmio stale data: Vulnerable: Clear CPU buffers attempted, no microcode; SMT Host state unknown\nVulnerability Retbleed: Mitigation; Enhanced IBRS\nVulnerability Spec rstack overflow: Not affected\nVulnerability Spec store bypass: Mitigation; Speculative Store Bypass disabled via prctl\nVulnerability Spectre v1: Mitigation; usercopy/swapgs barriers and __user pointer sanitization\nVulnerability Spectre v2: Mitigation; Enhanced / Automatic IBRS; IBPB conditional; RSB filling; PBRSB-eIBRS SW sequence; BHI Syscall hardening, KVM SW loop\nVulnerability Srbds: Not affected\nVulnerability Tsx async abort: Mitigation; Clear CPU buffers; SMT Host state unknown\n\nVersions of relevant libraries:\n[pip3] numpy==2.0.0\n[pip3] torch==2.3.1\n[pip3] triton==2.3.1\n[conda] Could not collect",
149
+ "transformers_version": "4.41.2",
150
+ "upper_git_hash": null,
151
+ "tokenizer_pad_token": [
152
+ "<unk>",
153
+ 0
154
+ ],
155
+ "tokenizer_eos_token": [
156
+ "<|im_end|>",
157
+ 32000
158
+ ],
159
+ "tokenizer_bos_token": [
160
+ "<s>",
161
+ 1
162
+ ],
163
+ "eot_token_id": 32000,
164
+ "max_length": 32768,
165
+ "task_hashes": {},
166
+ "model_source": "hf",
167
+ "model_name": "Open-Orca/Mistral-7B-OpenOrca",
168
+ "model_name_sanitized": "Open-Orca__Mistral-7B-OpenOrca",
169
+ "system_instruction": null,
170
+ "system_instruction_sha": null,
171
+ "fewshot_as_multiturn": false,
172
+ "chat_template": null,
173
+ "chat_template_sha": null,
174
+ "start_time": 72940.705278236,
175
+ "end_time": 74444.371073833,
176
+ "total_evaluation_time_seconds": "1503.6657955970004"
177
+ }
SanjiWatsuki__Kunoichi-7B/results_2024-06-27T20-34-47.197919.json ADDED
@@ -0,0 +1,177 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "results": {
3
+ "hellaswag": {
4
+ "acc,none": 0.6803425612427804,
5
+ "acc_stderr,none": 0.004653907471785688,
6
+ "acc_norm,none": 0.8525194184425413,
7
+ "acc_norm_stderr,none": 0.003538596773704852,
8
+ "alias": "hellaswag"
9
+ },
10
+ "eq_bench": {
11
+ "eqbench,none": 72.35673723130577,
12
+ "eqbench_stderr,none": 1.842888264461036,
13
+ "percent_parseable,none": 100.0,
14
+ "percent_parseable_stderr,none": 0.0,
15
+ "alias": "eq_bench"
16
+ }
17
+ },
18
+ "group_subtasks": {
19
+ "eq_bench": [],
20
+ "hellaswag": []
21
+ },
22
+ "configs": {
23
+ "eq_bench": {
24
+ "task": "eq_bench",
25
+ "dataset_path": "pbevan11/EQ-Bench",
26
+ "validation_split": "validation",
27
+ "doc_to_text": "prompt",
28
+ "doc_to_target": "reference_answer_fullscale",
29
+ "process_results": "def calculate_score_fullscale(docs, results):\n reference = eval(docs[\"reference_answer_fullscale\"])\n user = dict(re.findall(r\"(\\w+):\\s+(\\d+)\", results[0]))\n # First check that the emotions specified in the answer match those in the reference\n if len(user.items()) != 4:\n # print('! Error: 4 emotions were not returned')\n # print(user)\n return {\"eqbench\": 0, \"percent_parseable\": 0}\n emotions_dict = {}\n for emotion, user_emotion_score in user.items():\n for i in range(1, 5):\n if emotion == reference[f\"emotion{i}\"]:\n emotions_dict[emotion] = True\n if len(emotions_dict) != 4:\n print(\"! Error: emotions did not match reference\")\n print(user)\n return {\"eqbench\": 0, \"percent_parseable\": 0}\n\n difference_tally = (\n 0 # Tally of differerence from reference answers for this question\n )\n\n # Iterate over each emotion in the user's answers.\n for emotion, user_emotion_score in user.items():\n # If this emotion is in the reference, calculate the difference between the user's score and the reference score.\n for i in range(1, 5):\n if emotion == reference[f\"emotion{i}\"]:\n d = abs(\n float(user_emotion_score) - float(reference[f\"emotion{i}_score\"])\n )\n # this will be a value between 0 and 10\n if d == 0:\n scaled_difference = 0\n elif d <= 5:\n # S-shaped scaling function\n # https://www.desmos.com/calculator\n # 6.5\\cdot\\ \\frac{1}{\\left(1\\ +\\ e^{\\left(-1.2\\cdot\\left(x-4\\right)\\right)}\\right)}\n scaled_difference = 6.5 * (1 / (1 + math.e ** (-1.2 * (d - 4))))\n\n else:\n scaled_difference = d\n difference_tally += scaled_difference\n\n # Inverting the difference tally so that the closer the answer is to reference, the higher the score.\n # The adjustment constant is chosen such that answering randomly produces a score of zero.\n adjust_const = 0.7477\n final_score = 10 - (difference_tally * adjust_const)\n final_score_percent = final_score * 10\n\n return {\"eqbench\": final_score_percent, \"percent_parseable\": 100}\n",
30
+ "description": "",
31
+ "target_delimiter": " ",
32
+ "fewshot_delimiter": "\n\n",
33
+ "num_fewshot": 0,
34
+ "metric_list": [
35
+ {
36
+ "metric": "eqbench",
37
+ "aggregation": "mean",
38
+ "higher_is_better": true
39
+ },
40
+ {
41
+ "metric": "percent_parseable",
42
+ "aggregation": "mean",
43
+ "higher_is_better": true
44
+ }
45
+ ],
46
+ "output_type": "generate_until",
47
+ "generation_kwargs": {
48
+ "do_sample": false,
49
+ "temperature": 0.0,
50
+ "max_gen_toks": 80,
51
+ "until": [
52
+ "\n\n"
53
+ ]
54
+ },
55
+ "repeats": 1,
56
+ "should_decontaminate": false,
57
+ "metadata": {
58
+ "version": 2.1
59
+ }
60
+ },
61
+ "hellaswag": {
62
+ "task": "hellaswag",
63
+ "group": [
64
+ "multiple_choice"
65
+ ],
66
+ "dataset_path": "hellaswag",
67
+ "training_split": "train",
68
+ "validation_split": "validation",
69
+ "process_docs": "def process_docs(dataset: datasets.Dataset) -> datasets.Dataset:\n def _process_doc(doc):\n ctx = doc[\"ctx_a\"] + \" \" + doc[\"ctx_b\"].capitalize()\n out_doc = {\n \"query\": preprocess(doc[\"activity_label\"] + \": \" + ctx),\n \"choices\": [preprocess(ending) for ending in doc[\"endings\"]],\n \"gold\": int(doc[\"label\"]),\n }\n return out_doc\n\n return dataset.map(_process_doc)\n",
70
+ "doc_to_text": "{{query}}",
71
+ "doc_to_target": "{{label}}",
72
+ "doc_to_choice": "choices",
73
+ "description": "",
74
+ "target_delimiter": " ",
75
+ "fewshot_delimiter": "\n\n",
76
+ "num_fewshot": 0,
77
+ "metric_list": [
78
+ {
79
+ "metric": "acc",
80
+ "aggregation": "mean",
81
+ "higher_is_better": true
82
+ },
83
+ {
84
+ "metric": "acc_norm",
85
+ "aggregation": "mean",
86
+ "higher_is_better": true
87
+ }
88
+ ],
89
+ "output_type": "multiple_choice",
90
+ "repeats": 1,
91
+ "should_decontaminate": false,
92
+ "metadata": {
93
+ "version": 1.0
94
+ }
95
+ }
96
+ },
97
+ "versions": {
98
+ "eq_bench": 2.1,
99
+ "hellaswag": 1.0
100
+ },
101
+ "n-shot": {
102
+ "eq_bench": 0,
103
+ "hellaswag": 0
104
+ },
105
+ "higher_is_better": {
106
+ "eq_bench": {
107
+ "eqbench": true,
108
+ "percent_parseable": true
109
+ },
110
+ "hellaswag": {
111
+ "acc": true,
112
+ "acc_norm": true
113
+ }
114
+ },
115
+ "n-samples": {
116
+ "hellaswag": {
117
+ "original": 10042,
118
+ "effective": 10042
119
+ },
120
+ "eq_bench": {
121
+ "original": 171,
122
+ "effective": 171
123
+ }
124
+ },
125
+ "config": {
126
+ "model": "hf",
127
+ "model_args": "pretrained=SanjiWatsuki/Kunoichi-7B,trust_remote_code=True",
128
+ "model_num_parameters": 7241732096,
129
+ "model_dtype": "torch.bfloat16",
130
+ "model_revision": "main",
131
+ "model_sha": "b2c23b9d0036e6e74e5f61de74776e9091956c83",
132
+ "batch_size": "auto",
133
+ "batch_sizes": [
134
+ 64
135
+ ],
136
+ "device": null,
137
+ "use_cache": null,
138
+ "limit": null,
139
+ "bootstrap_iters": 100000,
140
+ "gen_kwargs": null,
141
+ "random_seed": 0,
142
+ "numpy_seed": 1234,
143
+ "torch_seed": 1234,
144
+ "fewshot_seed": 1234
145
+ },
146
+ "git_hash": null,
147
+ "date": 1719519064.691441,
148
+ "pretty_env_info": "PyTorch version: 2.3.1+cu121\nIs debug build: False\nCUDA used to build PyTorch: 12.1\nROCM used to build PyTorch: N/A\n\nOS: Ubuntu 22.04.4 LTS (x86_64)\nGCC version: (Ubuntu 11.4.0-1ubuntu1~22.04) 11.4.0\nClang version: Could not collect\nCMake version: Could not collect\nLibc version: glibc-2.35\n\nPython version: 3.10.12 (main, Nov 20 2023, 15:14:05) [GCC 11.4.0] (64-bit runtime)\nPython platform: Linux-6.5.0-1022-gcp-x86_64-with-glibc2.35\nIs CUDA available: True\nCUDA runtime version: 12.1.105\nCUDA_MODULE_LOADING set to: LAZY\nGPU models and configuration: \nGPU 0: NVIDIA L4\nGPU 1: NVIDIA L4\n\nNvidia driver version: 555.42.02\ncuDNN version: Could not collect\nHIP runtime version: N/A\nMIOpen runtime version: N/A\nIs XNNPACK available: True\n\nCPU:\nArchitecture: x86_64\nCPU op-mode(s): 32-bit, 64-bit\nAddress sizes: 46 bits physical, 48 bits virtual\nByte Order: Little Endian\nCPU(s): 24\nOn-line CPU(s) list: 0-23\nVendor ID: GenuineIntel\nModel name: Intel(R) Xeon(R) CPU @ 2.20GHz\nCPU family: 6\nModel: 85\nThread(s) per core: 2\nCore(s) per socket: 12\nSocket(s): 1\nStepping: 7\nBogoMIPS: 4400.47\nFlags: fpu vme de pse tsc msr pae mce cx8 apic sep mtrr pge mca cmov pat pse36 clflush mmx fxsr sse sse2 ss ht syscall nx pdpe1gb rdtscp lm constant_tsc rep_good nopl xtopology nonstop_tsc cpuid tsc_known_freq pni pclmulqdq ssse3 fma cx16 pcid sse4_1 sse4_2 x2apic movbe popcnt aes xsave avx f16c rdrand hypervisor lahf_lm abm 3dnowprefetch invpcid_single ssbd ibrs ibpb stibp ibrs_enhanced fsgsbase tsc_adjust bmi1 hle avx2 smep bmi2 erms invpcid rtm mpx avx512f avx512dq rdseed adx smap clflushopt clwb avx512cd avx512bw avx512vl xsaveopt xsavec xgetbv1 xsaves arat avx512_vnni md_clear arch_capabilities\nHypervisor vendor: KVM\nVirtualization type: full\nL1d cache: 384 KiB (12 instances)\nL1i cache: 384 KiB (12 instances)\nL2 cache: 12 MiB (12 instances)\nL3 cache: 38.5 MiB (1 instance)\nNUMA node(s): 1\nNUMA node0 CPU(s): 0-23\nVulnerability Gather data sampling: Not affected\nVulnerability Itlb multihit: Not affected\nVulnerability L1tf: Not affected\nVulnerability Mds: Mitigation; Clear CPU buffers; SMT Host state unknown\nVulnerability Meltdown: Not affected\nVulnerability Mmio stale data: Vulnerable: Clear CPU buffers attempted, no microcode; SMT Host state unknown\nVulnerability Retbleed: Mitigation; Enhanced IBRS\nVulnerability Spec rstack overflow: Not affected\nVulnerability Spec store bypass: Mitigation; Speculative Store Bypass disabled via prctl\nVulnerability Spectre v1: Mitigation; usercopy/swapgs barriers and __user pointer sanitization\nVulnerability Spectre v2: Mitigation; Enhanced / Automatic IBRS; IBPB conditional; RSB filling; PBRSB-eIBRS SW sequence; BHI Syscall hardening, KVM SW loop\nVulnerability Srbds: Not affected\nVulnerability Tsx async abort: Mitigation; Clear CPU buffers; SMT Host state unknown\n\nVersions of relevant libraries:\n[pip3] numpy==2.0.0\n[pip3] torch==2.3.1\n[pip3] triton==2.3.1\n[conda] Could not collect",
149
+ "transformers_version": "4.41.2",
150
+ "upper_git_hash": null,
151
+ "tokenizer_pad_token": [
152
+ "<unk>",
153
+ 0
154
+ ],
155
+ "tokenizer_eos_token": [
156
+ "</s>",
157
+ 2
158
+ ],
159
+ "tokenizer_bos_token": [
160
+ "<s>",
161
+ 1
162
+ ],
163
+ "eot_token_id": 2,
164
+ "max_length": 8192,
165
+ "task_hashes": {},
166
+ "model_source": "hf",
167
+ "model_name": "SanjiWatsuki/Kunoichi-7B",
168
+ "model_name_sanitized": "SanjiWatsuki__Kunoichi-7B",
169
+ "system_instruction": null,
170
+ "system_instruction_sha": null,
171
+ "fewshot_as_multiturn": false,
172
+ "chat_template": null,
173
+ "chat_template_sha": null,
174
+ "start_time": 71447.838088771,
175
+ "end_time": 72877.26274353,
176
+ "total_evaluation_time_seconds": "1429.424654759001"
177
+ }
Undi95__Toppy-M-7B/results_2024-06-28T02-28-16.478931.json ADDED
@@ -0,0 +1,177 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "results": {
3
+ "hellaswag": {
4
+ "acc,none": 0.6571400119498108,
5
+ "acc_stderr,none": 0.00473695081061781,
6
+ "acc_norm,none": 0.8351921927902808,
7
+ "acc_norm_stderr,none": 0.003702487662126953,
8
+ "alias": "hellaswag"
9
+ },
10
+ "eq_bench": {
11
+ "eqbench,none": 66.56565114431275,
12
+ "eqbench_stderr,none": 2.1832557339862837,
13
+ "percent_parseable,none": 100.0,
14
+ "percent_parseable_stderr,none": 0.0,
15
+ "alias": "eq_bench"
16
+ }
17
+ },
18
+ "group_subtasks": {
19
+ "eq_bench": [],
20
+ "hellaswag": []
21
+ },
22
+ "configs": {
23
+ "eq_bench": {
24
+ "task": "eq_bench",
25
+ "dataset_path": "pbevan11/EQ-Bench",
26
+ "validation_split": "validation",
27
+ "doc_to_text": "prompt",
28
+ "doc_to_target": "reference_answer_fullscale",
29
+ "process_results": "def calculate_score_fullscale(docs, results):\n reference = eval(docs[\"reference_answer_fullscale\"])\n user = dict(re.findall(r\"(\\w+):\\s+(\\d+)\", results[0]))\n # First check that the emotions specified in the answer match those in the reference\n if len(user.items()) != 4:\n # print('! Error: 4 emotions were not returned')\n # print(user)\n return {\"eqbench\": 0, \"percent_parseable\": 0}\n emotions_dict = {}\n for emotion, user_emotion_score in user.items():\n for i in range(1, 5):\n if emotion == reference[f\"emotion{i}\"]:\n emotions_dict[emotion] = True\n if len(emotions_dict) != 4:\n print(\"! Error: emotions did not match reference\")\n print(user)\n return {\"eqbench\": 0, \"percent_parseable\": 0}\n\n difference_tally = (\n 0 # Tally of differerence from reference answers for this question\n )\n\n # Iterate over each emotion in the user's answers.\n for emotion, user_emotion_score in user.items():\n # If this emotion is in the reference, calculate the difference between the user's score and the reference score.\n for i in range(1, 5):\n if emotion == reference[f\"emotion{i}\"]:\n d = abs(\n float(user_emotion_score) - float(reference[f\"emotion{i}_score\"])\n )\n # this will be a value between 0 and 10\n if d == 0:\n scaled_difference = 0\n elif d <= 5:\n # S-shaped scaling function\n # https://www.desmos.com/calculator\n # 6.5\\cdot\\ \\frac{1}{\\left(1\\ +\\ e^{\\left(-1.2\\cdot\\left(x-4\\right)\\right)}\\right)}\n scaled_difference = 6.5 * (1 / (1 + math.e ** (-1.2 * (d - 4))))\n\n else:\n scaled_difference = d\n difference_tally += scaled_difference\n\n # Inverting the difference tally so that the closer the answer is to reference, the higher the score.\n # The adjustment constant is chosen such that answering randomly produces a score of zero.\n adjust_const = 0.7477\n final_score = 10 - (difference_tally * adjust_const)\n final_score_percent = final_score * 10\n\n return {\"eqbench\": final_score_percent, \"percent_parseable\": 100}\n",
30
+ "description": "",
31
+ "target_delimiter": " ",
32
+ "fewshot_delimiter": "\n\n",
33
+ "num_fewshot": 0,
34
+ "metric_list": [
35
+ {
36
+ "metric": "eqbench",
37
+ "aggregation": "mean",
38
+ "higher_is_better": true
39
+ },
40
+ {
41
+ "metric": "percent_parseable",
42
+ "aggregation": "mean",
43
+ "higher_is_better": true
44
+ }
45
+ ],
46
+ "output_type": "generate_until",
47
+ "generation_kwargs": {
48
+ "do_sample": false,
49
+ "temperature": 0.0,
50
+ "max_gen_toks": 80,
51
+ "until": [
52
+ "\n\n"
53
+ ]
54
+ },
55
+ "repeats": 1,
56
+ "should_decontaminate": false,
57
+ "metadata": {
58
+ "version": 2.1
59
+ }
60
+ },
61
+ "hellaswag": {
62
+ "task": "hellaswag",
63
+ "group": [
64
+ "multiple_choice"
65
+ ],
66
+ "dataset_path": "hellaswag",
67
+ "training_split": "train",
68
+ "validation_split": "validation",
69
+ "process_docs": "def process_docs(dataset: datasets.Dataset) -> datasets.Dataset:\n def _process_doc(doc):\n ctx = doc[\"ctx_a\"] + \" \" + doc[\"ctx_b\"].capitalize()\n out_doc = {\n \"query\": preprocess(doc[\"activity_label\"] + \": \" + ctx),\n \"choices\": [preprocess(ending) for ending in doc[\"endings\"]],\n \"gold\": int(doc[\"label\"]),\n }\n return out_doc\n\n return dataset.map(_process_doc)\n",
70
+ "doc_to_text": "{{query}}",
71
+ "doc_to_target": "{{label}}",
72
+ "doc_to_choice": "choices",
73
+ "description": "",
74
+ "target_delimiter": " ",
75
+ "fewshot_delimiter": "\n\n",
76
+ "num_fewshot": 0,
77
+ "metric_list": [
78
+ {
79
+ "metric": "acc",
80
+ "aggregation": "mean",
81
+ "higher_is_better": true
82
+ },
83
+ {
84
+ "metric": "acc_norm",
85
+ "aggregation": "mean",
86
+ "higher_is_better": true
87
+ }
88
+ ],
89
+ "output_type": "multiple_choice",
90
+ "repeats": 1,
91
+ "should_decontaminate": false,
92
+ "metadata": {
93
+ "version": 1.0
94
+ }
95
+ }
96
+ },
97
+ "versions": {
98
+ "eq_bench": 2.1,
99
+ "hellaswag": 1.0
100
+ },
101
+ "n-shot": {
102
+ "eq_bench": 0,
103
+ "hellaswag": 0
104
+ },
105
+ "higher_is_better": {
106
+ "eq_bench": {
107
+ "eqbench": true,
108
+ "percent_parseable": true
109
+ },
110
+ "hellaswag": {
111
+ "acc": true,
112
+ "acc_norm": true
113
+ }
114
+ },
115
+ "n-samples": {
116
+ "hellaswag": {
117
+ "original": 10042,
118
+ "effective": 10042
119
+ },
120
+ "eq_bench": {
121
+ "original": 171,
122
+ "effective": 171
123
+ }
124
+ },
125
+ "config": {
126
+ "model": "hf",
127
+ "model_args": "pretrained=Undi95/Toppy-M-7B,trust_remote_code=True",
128
+ "model_num_parameters": 7241732096,
129
+ "model_dtype": "torch.bfloat16",
130
+ "model_revision": "main",
131
+ "model_sha": "5d0c492effbb2e52ea04e5100c6ce02eba48a793",
132
+ "batch_size": "auto",
133
+ "batch_sizes": [
134
+ 64
135
+ ],
136
+ "device": null,
137
+ "use_cache": null,
138
+ "limit": null,
139
+ "bootstrap_iters": 100000,
140
+ "gen_kwargs": null,
141
+ "random_seed": 0,
142
+ "numpy_seed": 1234,
143
+ "torch_seed": 1234,
144
+ "fewshot_seed": 1234
145
+ },
146
+ "git_hash": null,
147
+ "date": 1719540198.0639265,
148
+ "pretty_env_info": "PyTorch version: 2.3.1+cu121\nIs debug build: False\nCUDA used to build PyTorch: 12.1\nROCM used to build PyTorch: N/A\n\nOS: Ubuntu 22.04.4 LTS (x86_64)\nGCC version: (Ubuntu 11.4.0-1ubuntu1~22.04) 11.4.0\nClang version: Could not collect\nCMake version: Could not collect\nLibc version: glibc-2.35\n\nPython version: 3.10.12 (main, Nov 20 2023, 15:14:05) [GCC 11.4.0] (64-bit runtime)\nPython platform: Linux-6.5.0-1022-gcp-x86_64-with-glibc2.35\nIs CUDA available: True\nCUDA runtime version: 12.1.105\nCUDA_MODULE_LOADING set to: LAZY\nGPU models and configuration: \nGPU 0: NVIDIA L4\nGPU 1: NVIDIA L4\n\nNvidia driver version: 555.42.02\ncuDNN version: Could not collect\nHIP runtime version: N/A\nMIOpen runtime version: N/A\nIs XNNPACK available: True\n\nCPU:\nArchitecture: x86_64\nCPU op-mode(s): 32-bit, 64-bit\nAddress sizes: 46 bits physical, 48 bits virtual\nByte Order: Little Endian\nCPU(s): 24\nOn-line CPU(s) list: 0-23\nVendor ID: GenuineIntel\nModel name: Intel(R) Xeon(R) CPU @ 2.20GHz\nCPU family: 6\nModel: 85\nThread(s) per core: 2\nCore(s) per socket: 12\nSocket(s): 1\nStepping: 7\nBogoMIPS: 4400.47\nFlags: fpu vme de pse tsc msr pae mce cx8 apic sep mtrr pge mca cmov pat pse36 clflush mmx fxsr sse sse2 ss ht syscall nx pdpe1gb rdtscp lm constant_tsc rep_good nopl xtopology nonstop_tsc cpuid tsc_known_freq pni pclmulqdq ssse3 fma cx16 pcid sse4_1 sse4_2 x2apic movbe popcnt aes xsave avx f16c rdrand hypervisor lahf_lm abm 3dnowprefetch invpcid_single ssbd ibrs ibpb stibp ibrs_enhanced fsgsbase tsc_adjust bmi1 hle avx2 smep bmi2 erms invpcid rtm mpx avx512f avx512dq rdseed adx smap clflushopt clwb avx512cd avx512bw avx512vl xsaveopt xsavec xgetbv1 xsaves arat avx512_vnni md_clear arch_capabilities\nHypervisor vendor: KVM\nVirtualization type: full\nL1d cache: 384 KiB (12 instances)\nL1i cache: 384 KiB (12 instances)\nL2 cache: 12 MiB (12 instances)\nL3 cache: 38.5 MiB (1 instance)\nNUMA node(s): 1\nNUMA node0 CPU(s): 0-23\nVulnerability Gather data sampling: Not affected\nVulnerability Itlb multihit: Not affected\nVulnerability L1tf: Not affected\nVulnerability Mds: Mitigation; Clear CPU buffers; SMT Host state unknown\nVulnerability Meltdown: Not affected\nVulnerability Mmio stale data: Vulnerable: Clear CPU buffers attempted, no microcode; SMT Host state unknown\nVulnerability Retbleed: Mitigation; Enhanced IBRS\nVulnerability Spec rstack overflow: Not affected\nVulnerability Spec store bypass: Mitigation; Speculative Store Bypass disabled via prctl\nVulnerability Spectre v1: Mitigation; usercopy/swapgs barriers and __user pointer sanitization\nVulnerability Spectre v2: Mitigation; Enhanced / Automatic IBRS; IBPB conditional; RSB filling; PBRSB-eIBRS SW sequence; BHI Syscall hardening, KVM SW loop\nVulnerability Srbds: Not affected\nVulnerability Tsx async abort: Mitigation; Clear CPU buffers; SMT Host state unknown\n\nVersions of relevant libraries:\n[pip3] numpy==2.0.0\n[pip3] torch==2.3.1\n[pip3] triton==2.3.1\n[conda] Could not collect",
149
+ "transformers_version": "4.41.2",
150
+ "upper_git_hash": null,
151
+ "tokenizer_pad_token": [
152
+ "<unk>",
153
+ 0
154
+ ],
155
+ "tokenizer_eos_token": [
156
+ "</s>",
157
+ 2
158
+ ],
159
+ "tokenizer_bos_token": [
160
+ "<s>",
161
+ 1
162
+ ],
163
+ "eot_token_id": 2,
164
+ "max_length": 32768,
165
+ "task_hashes": {},
166
+ "model_source": "hf",
167
+ "model_name": "Undi95/Toppy-M-7B",
168
+ "model_name_sanitized": "Undi95__Toppy-M-7B",
169
+ "system_instruction": null,
170
+ "system_instruction_sha": null,
171
+ "fewshot_as_multiturn": false,
172
+ "chat_template": null,
173
+ "chat_template_sha": null,
174
+ "start_time": 92581.210827571,
175
+ "end_time": 94086.543624108,
176
+ "total_evaluation_time_seconds": "1505.3327965369972"
177
+ }
athirdpath__NSFW_DPO_vmgb-7b/results_2024-06-28T02-55-12.160237.json ADDED
@@ -0,0 +1,177 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "results": {
3
+ "hellaswag": {
4
+ "acc,none": 0.6730730930093607,
5
+ "acc_stderr,none": 0.0046813160644444095,
6
+ "acc_norm,none": 0.8536148177653854,
7
+ "acc_norm_stderr,none": 0.0035276951498235012,
8
+ "alias": "hellaswag"
9
+ },
10
+ "eq_bench": {
11
+ "eqbench,none": 74.82935321697907,
12
+ "eqbench_stderr,none": 1.6591997145588517,
13
+ "percent_parseable,none": 100.0,
14
+ "percent_parseable_stderr,none": 0.0,
15
+ "alias": "eq_bench"
16
+ }
17
+ },
18
+ "group_subtasks": {
19
+ "eq_bench": [],
20
+ "hellaswag": []
21
+ },
22
+ "configs": {
23
+ "eq_bench": {
24
+ "task": "eq_bench",
25
+ "dataset_path": "pbevan11/EQ-Bench",
26
+ "validation_split": "validation",
27
+ "doc_to_text": "prompt",
28
+ "doc_to_target": "reference_answer_fullscale",
29
+ "process_results": "def calculate_score_fullscale(docs, results):\n reference = eval(docs[\"reference_answer_fullscale\"])\n user = dict(re.findall(r\"(\\w+):\\s+(\\d+)\", results[0]))\n # First check that the emotions specified in the answer match those in the reference\n if len(user.items()) != 4:\n # print('! Error: 4 emotions were not returned')\n # print(user)\n return {\"eqbench\": 0, \"percent_parseable\": 0}\n emotions_dict = {}\n for emotion, user_emotion_score in user.items():\n for i in range(1, 5):\n if emotion == reference[f\"emotion{i}\"]:\n emotions_dict[emotion] = True\n if len(emotions_dict) != 4:\n print(\"! Error: emotions did not match reference\")\n print(user)\n return {\"eqbench\": 0, \"percent_parseable\": 0}\n\n difference_tally = (\n 0 # Tally of differerence from reference answers for this question\n )\n\n # Iterate over each emotion in the user's answers.\n for emotion, user_emotion_score in user.items():\n # If this emotion is in the reference, calculate the difference between the user's score and the reference score.\n for i in range(1, 5):\n if emotion == reference[f\"emotion{i}\"]:\n d = abs(\n float(user_emotion_score) - float(reference[f\"emotion{i}_score\"])\n )\n # this will be a value between 0 and 10\n if d == 0:\n scaled_difference = 0\n elif d <= 5:\n # S-shaped scaling function\n # https://www.desmos.com/calculator\n # 6.5\\cdot\\ \\frac{1}{\\left(1\\ +\\ e^{\\left(-1.2\\cdot\\left(x-4\\right)\\right)}\\right)}\n scaled_difference = 6.5 * (1 / (1 + math.e ** (-1.2 * (d - 4))))\n\n else:\n scaled_difference = d\n difference_tally += scaled_difference\n\n # Inverting the difference tally so that the closer the answer is to reference, the higher the score.\n # The adjustment constant is chosen such that answering randomly produces a score of zero.\n adjust_const = 0.7477\n final_score = 10 - (difference_tally * adjust_const)\n final_score_percent = final_score * 10\n\n return {\"eqbench\": final_score_percent, \"percent_parseable\": 100}\n",
30
+ "description": "",
31
+ "target_delimiter": " ",
32
+ "fewshot_delimiter": "\n\n",
33
+ "num_fewshot": 0,
34
+ "metric_list": [
35
+ {
36
+ "metric": "eqbench",
37
+ "aggregation": "mean",
38
+ "higher_is_better": true
39
+ },
40
+ {
41
+ "metric": "percent_parseable",
42
+ "aggregation": "mean",
43
+ "higher_is_better": true
44
+ }
45
+ ],
46
+ "output_type": "generate_until",
47
+ "generation_kwargs": {
48
+ "do_sample": false,
49
+ "temperature": 0.0,
50
+ "max_gen_toks": 80,
51
+ "until": [
52
+ "\n\n"
53
+ ]
54
+ },
55
+ "repeats": 1,
56
+ "should_decontaminate": false,
57
+ "metadata": {
58
+ "version": 2.1
59
+ }
60
+ },
61
+ "hellaswag": {
62
+ "task": "hellaswag",
63
+ "group": [
64
+ "multiple_choice"
65
+ ],
66
+ "dataset_path": "hellaswag",
67
+ "training_split": "train",
68
+ "validation_split": "validation",
69
+ "process_docs": "def process_docs(dataset: datasets.Dataset) -> datasets.Dataset:\n def _process_doc(doc):\n ctx = doc[\"ctx_a\"] + \" \" + doc[\"ctx_b\"].capitalize()\n out_doc = {\n \"query\": preprocess(doc[\"activity_label\"] + \": \" + ctx),\n \"choices\": [preprocess(ending) for ending in doc[\"endings\"]],\n \"gold\": int(doc[\"label\"]),\n }\n return out_doc\n\n return dataset.map(_process_doc)\n",
70
+ "doc_to_text": "{{query}}",
71
+ "doc_to_target": "{{label}}",
72
+ "doc_to_choice": "choices",
73
+ "description": "",
74
+ "target_delimiter": " ",
75
+ "fewshot_delimiter": "\n\n",
76
+ "num_fewshot": 0,
77
+ "metric_list": [
78
+ {
79
+ "metric": "acc",
80
+ "aggregation": "mean",
81
+ "higher_is_better": true
82
+ },
83
+ {
84
+ "metric": "acc_norm",
85
+ "aggregation": "mean",
86
+ "higher_is_better": true
87
+ }
88
+ ],
89
+ "output_type": "multiple_choice",
90
+ "repeats": 1,
91
+ "should_decontaminate": false,
92
+ "metadata": {
93
+ "version": 1.0
94
+ }
95
+ }
96
+ },
97
+ "versions": {
98
+ "eq_bench": 2.1,
99
+ "hellaswag": 1.0
100
+ },
101
+ "n-shot": {
102
+ "eq_bench": 0,
103
+ "hellaswag": 0
104
+ },
105
+ "higher_is_better": {
106
+ "eq_bench": {
107
+ "eqbench": true,
108
+ "percent_parseable": true
109
+ },
110
+ "hellaswag": {
111
+ "acc": true,
112
+ "acc_norm": true
113
+ }
114
+ },
115
+ "n-samples": {
116
+ "hellaswag": {
117
+ "original": 10042,
118
+ "effective": 10042
119
+ },
120
+ "eq_bench": {
121
+ "original": 171,
122
+ "effective": 171
123
+ }
124
+ },
125
+ "config": {
126
+ "model": "hf",
127
+ "model_args": "pretrained=athirdpath/NSFW_DPO_vmgb-7b,trust_remote_code=True",
128
+ "model_num_parameters": 7241732096,
129
+ "model_dtype": "torch.bfloat16",
130
+ "model_revision": "main",
131
+ "model_sha": "b667d7810267685cd4f32a8f82044e419c010abe",
132
+ "batch_size": "auto",
133
+ "batch_sizes": [
134
+ 64
135
+ ],
136
+ "device": null,
137
+ "use_cache": null,
138
+ "limit": null,
139
+ "bootstrap_iters": 100000,
140
+ "gen_kwargs": null,
141
+ "random_seed": 0,
142
+ "numpy_seed": 1234,
143
+ "torch_seed": 1234,
144
+ "fewshot_seed": 1234
145
+ },
146
+ "git_hash": null,
147
+ "date": 1719541817.2830012,
148
+ "pretty_env_info": "PyTorch version: 2.3.1+cu121\nIs debug build: False\nCUDA used to build PyTorch: 12.1\nROCM used to build PyTorch: N/A\n\nOS: Ubuntu 22.04.4 LTS (x86_64)\nGCC version: (Ubuntu 11.4.0-1ubuntu1~22.04) 11.4.0\nClang version: Could not collect\nCMake version: Could not collect\nLibc version: glibc-2.35\n\nPython version: 3.10.12 (main, Nov 20 2023, 15:14:05) [GCC 11.4.0] (64-bit runtime)\nPython platform: Linux-6.5.0-1022-gcp-x86_64-with-glibc2.35\nIs CUDA available: True\nCUDA runtime version: 12.1.105\nCUDA_MODULE_LOADING set to: LAZY\nGPU models and configuration: \nGPU 0: NVIDIA L4\nGPU 1: NVIDIA L4\n\nNvidia driver version: 555.42.02\ncuDNN version: Could not collect\nHIP runtime version: N/A\nMIOpen runtime version: N/A\nIs XNNPACK available: True\n\nCPU:\nArchitecture: x86_64\nCPU op-mode(s): 32-bit, 64-bit\nAddress sizes: 46 bits physical, 48 bits virtual\nByte Order: Little Endian\nCPU(s): 24\nOn-line CPU(s) list: 0-23\nVendor ID: GenuineIntel\nModel name: Intel(R) Xeon(R) CPU @ 2.20GHz\nCPU family: 6\nModel: 85\nThread(s) per core: 2\nCore(s) per socket: 12\nSocket(s): 1\nStepping: 7\nBogoMIPS: 4400.47\nFlags: fpu vme de pse tsc msr pae mce cx8 apic sep mtrr pge mca cmov pat pse36 clflush mmx fxsr sse sse2 ss ht syscall nx pdpe1gb rdtscp lm constant_tsc rep_good nopl xtopology nonstop_tsc cpuid tsc_known_freq pni pclmulqdq ssse3 fma cx16 pcid sse4_1 sse4_2 x2apic movbe popcnt aes xsave avx f16c rdrand hypervisor lahf_lm abm 3dnowprefetch invpcid_single ssbd ibrs ibpb stibp ibrs_enhanced fsgsbase tsc_adjust bmi1 hle avx2 smep bmi2 erms invpcid rtm mpx avx512f avx512dq rdseed adx smap clflushopt clwb avx512cd avx512bw avx512vl xsaveopt xsavec xgetbv1 xsaves arat avx512_vnni md_clear arch_capabilities\nHypervisor vendor: KVM\nVirtualization type: full\nL1d cache: 384 KiB (12 instances)\nL1i cache: 384 KiB (12 instances)\nL2 cache: 12 MiB (12 instances)\nL3 cache: 38.5 MiB (1 instance)\nNUMA node(s): 1\nNUMA node0 CPU(s): 0-23\nVulnerability Gather data sampling: Not affected\nVulnerability Itlb multihit: Not affected\nVulnerability L1tf: Not affected\nVulnerability Mds: Mitigation; Clear CPU buffers; SMT Host state unknown\nVulnerability Meltdown: Not affected\nVulnerability Mmio stale data: Vulnerable: Clear CPU buffers attempted, no microcode; SMT Host state unknown\nVulnerability Retbleed: Mitigation; Enhanced IBRS\nVulnerability Spec rstack overflow: Not affected\nVulnerability Spec store bypass: Mitigation; Speculative Store Bypass disabled via prctl\nVulnerability Spectre v1: Mitigation; usercopy/swapgs barriers and __user pointer sanitization\nVulnerability Spectre v2: Mitigation; Enhanced / Automatic IBRS; IBPB conditional; RSB filling; PBRSB-eIBRS SW sequence; BHI Syscall hardening, KVM SW loop\nVulnerability Srbds: Not affected\nVulnerability Tsx async abort: Mitigation; Clear CPU buffers; SMT Host state unknown\n\nVersions of relevant libraries:\n[pip3] numpy==2.0.0\n[pip3] torch==2.3.1\n[pip3] triton==2.3.1\n[conda] Could not collect",
149
+ "transformers_version": "4.41.2",
150
+ "upper_git_hash": null,
151
+ "tokenizer_pad_token": [
152
+ "<unk>",
153
+ 0
154
+ ],
155
+ "tokenizer_eos_token": [
156
+ "</s>",
157
+ 2
158
+ ],
159
+ "tokenizer_bos_token": [
160
+ "<s>",
161
+ 1
162
+ ],
163
+ "eot_token_id": 2,
164
+ "max_length": 32768,
165
+ "task_hashes": {},
166
+ "model_source": "hf",
167
+ "model_name": "athirdpath/NSFW_DPO_vmgb-7b",
168
+ "model_name_sanitized": "athirdpath__NSFW_DPO_vmgb-7b",
169
+ "system_instruction": null,
170
+ "system_instruction_sha": null,
171
+ "fewshot_as_multiturn": false,
172
+ "chat_template": null,
173
+ "chat_template_sha": null,
174
+ "start_time": 94200.513127129,
175
+ "end_time": 95702.225070561,
176
+ "total_evaluation_time_seconds": "1501.7119434320048"
177
+ }
jondurbin__airoboros-m-7b-3.1.2/results_2024-06-27T21-27-37.734965.json ADDED
@@ -0,0 +1,177 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "results": {
3
+ "hellaswag": {
4
+ "acc,none": 0.6262696673969329,
5
+ "acc_stderr,none": 0.0048280457747349,
6
+ "acc_norm,none": 0.8133837880900219,
7
+ "acc_norm_stderr,none": 0.0038880689432920544,
8
+ "alias": "hellaswag"
9
+ },
10
+ "eq_bench": {
11
+ "eqbench,none": 38.51541437922841,
12
+ "eqbench_stderr,none": 3.511567923871361,
13
+ "percent_parseable,none": 100.0,
14
+ "percent_parseable_stderr,none": 0.0,
15
+ "alias": "eq_bench"
16
+ }
17
+ },
18
+ "group_subtasks": {
19
+ "eq_bench": [],
20
+ "hellaswag": []
21
+ },
22
+ "configs": {
23
+ "eq_bench": {
24
+ "task": "eq_bench",
25
+ "dataset_path": "pbevan11/EQ-Bench",
26
+ "validation_split": "validation",
27
+ "doc_to_text": "prompt",
28
+ "doc_to_target": "reference_answer_fullscale",
29
+ "process_results": "def calculate_score_fullscale(docs, results):\n reference = eval(docs[\"reference_answer_fullscale\"])\n user = dict(re.findall(r\"(\\w+):\\s+(\\d+)\", results[0]))\n # First check that the emotions specified in the answer match those in the reference\n if len(user.items()) != 4:\n # print('! Error: 4 emotions were not returned')\n # print(user)\n return {\"eqbench\": 0, \"percent_parseable\": 0}\n emotions_dict = {}\n for emotion, user_emotion_score in user.items():\n for i in range(1, 5):\n if emotion == reference[f\"emotion{i}\"]:\n emotions_dict[emotion] = True\n if len(emotions_dict) != 4:\n print(\"! Error: emotions did not match reference\")\n print(user)\n return {\"eqbench\": 0, \"percent_parseable\": 0}\n\n difference_tally = (\n 0 # Tally of differerence from reference answers for this question\n )\n\n # Iterate over each emotion in the user's answers.\n for emotion, user_emotion_score in user.items():\n # If this emotion is in the reference, calculate the difference between the user's score and the reference score.\n for i in range(1, 5):\n if emotion == reference[f\"emotion{i}\"]:\n d = abs(\n float(user_emotion_score) - float(reference[f\"emotion{i}_score\"])\n )\n # this will be a value between 0 and 10\n if d == 0:\n scaled_difference = 0\n elif d <= 5:\n # S-shaped scaling function\n # https://www.desmos.com/calculator\n # 6.5\\cdot\\ \\frac{1}{\\left(1\\ +\\ e^{\\left(-1.2\\cdot\\left(x-4\\right)\\right)}\\right)}\n scaled_difference = 6.5 * (1 / (1 + math.e ** (-1.2 * (d - 4))))\n\n else:\n scaled_difference = d\n difference_tally += scaled_difference\n\n # Inverting the difference tally so that the closer the answer is to reference, the higher the score.\n # The adjustment constant is chosen such that answering randomly produces a score of zero.\n adjust_const = 0.7477\n final_score = 10 - (difference_tally * adjust_const)\n final_score_percent = final_score * 10\n\n return {\"eqbench\": final_score_percent, \"percent_parseable\": 100}\n",
30
+ "description": "",
31
+ "target_delimiter": " ",
32
+ "fewshot_delimiter": "\n\n",
33
+ "num_fewshot": 0,
34
+ "metric_list": [
35
+ {
36
+ "metric": "eqbench",
37
+ "aggregation": "mean",
38
+ "higher_is_better": true
39
+ },
40
+ {
41
+ "metric": "percent_parseable",
42
+ "aggregation": "mean",
43
+ "higher_is_better": true
44
+ }
45
+ ],
46
+ "output_type": "generate_until",
47
+ "generation_kwargs": {
48
+ "do_sample": false,
49
+ "temperature": 0.0,
50
+ "max_gen_toks": 80,
51
+ "until": [
52
+ "\n\n"
53
+ ]
54
+ },
55
+ "repeats": 1,
56
+ "should_decontaminate": false,
57
+ "metadata": {
58
+ "version": 2.1
59
+ }
60
+ },
61
+ "hellaswag": {
62
+ "task": "hellaswag",
63
+ "group": [
64
+ "multiple_choice"
65
+ ],
66
+ "dataset_path": "hellaswag",
67
+ "training_split": "train",
68
+ "validation_split": "validation",
69
+ "process_docs": "def process_docs(dataset: datasets.Dataset) -> datasets.Dataset:\n def _process_doc(doc):\n ctx = doc[\"ctx_a\"] + \" \" + doc[\"ctx_b\"].capitalize()\n out_doc = {\n \"query\": preprocess(doc[\"activity_label\"] + \": \" + ctx),\n \"choices\": [preprocess(ending) for ending in doc[\"endings\"]],\n \"gold\": int(doc[\"label\"]),\n }\n return out_doc\n\n return dataset.map(_process_doc)\n",
70
+ "doc_to_text": "{{query}}",
71
+ "doc_to_target": "{{label}}",
72
+ "doc_to_choice": "choices",
73
+ "description": "",
74
+ "target_delimiter": " ",
75
+ "fewshot_delimiter": "\n\n",
76
+ "num_fewshot": 0,
77
+ "metric_list": [
78
+ {
79
+ "metric": "acc",
80
+ "aggregation": "mean",
81
+ "higher_is_better": true
82
+ },
83
+ {
84
+ "metric": "acc_norm",
85
+ "aggregation": "mean",
86
+ "higher_is_better": true
87
+ }
88
+ ],
89
+ "output_type": "multiple_choice",
90
+ "repeats": 1,
91
+ "should_decontaminate": false,
92
+ "metadata": {
93
+ "version": 1.0
94
+ }
95
+ }
96
+ },
97
+ "versions": {
98
+ "eq_bench": 2.1,
99
+ "hellaswag": 1.0
100
+ },
101
+ "n-shot": {
102
+ "eq_bench": 0,
103
+ "hellaswag": 0
104
+ },
105
+ "higher_is_better": {
106
+ "eq_bench": {
107
+ "eqbench": true,
108
+ "percent_parseable": true
109
+ },
110
+ "hellaswag": {
111
+ "acc": true,
112
+ "acc_norm": true
113
+ }
114
+ },
115
+ "n-samples": {
116
+ "hellaswag": {
117
+ "original": 10042,
118
+ "effective": 10042
119
+ },
120
+ "eq_bench": {
121
+ "original": 171,
122
+ "effective": 171
123
+ }
124
+ },
125
+ "config": {
126
+ "model": "hf",
127
+ "model_args": "pretrained=jondurbin/airoboros-m-7b-3.1.2,trust_remote_code=True",
128
+ "model_num_parameters": 7241732096,
129
+ "model_dtype": "torch.bfloat16",
130
+ "model_revision": "main",
131
+ "model_sha": "e9a7f0271fa442d65bf6be87feeb3f4de2f5760e",
132
+ "batch_size": "auto",
133
+ "batch_sizes": [
134
+ 64
135
+ ],
136
+ "device": null,
137
+ "use_cache": null,
138
+ "limit": null,
139
+ "bootstrap_iters": 100000,
140
+ "gen_kwargs": null,
141
+ "random_seed": 0,
142
+ "numpy_seed": 1234,
143
+ "torch_seed": 1234,
144
+ "fewshot_seed": 1234
145
+ },
146
+ "git_hash": null,
147
+ "date": 1719522153.290284,
148
+ "pretty_env_info": "PyTorch version: 2.3.1+cu121\nIs debug build: False\nCUDA used to build PyTorch: 12.1\nROCM used to build PyTorch: N/A\n\nOS: Ubuntu 22.04.4 LTS (x86_64)\nGCC version: (Ubuntu 11.4.0-1ubuntu1~22.04) 11.4.0\nClang version: Could not collect\nCMake version: Could not collect\nLibc version: glibc-2.35\n\nPython version: 3.10.12 (main, Nov 20 2023, 15:14:05) [GCC 11.4.0] (64-bit runtime)\nPython platform: Linux-6.5.0-1022-gcp-x86_64-with-glibc2.35\nIs CUDA available: True\nCUDA runtime version: 12.1.105\nCUDA_MODULE_LOADING set to: LAZY\nGPU models and configuration: \nGPU 0: NVIDIA L4\nGPU 1: NVIDIA L4\n\nNvidia driver version: 555.42.02\ncuDNN version: Could not collect\nHIP runtime version: N/A\nMIOpen runtime version: N/A\nIs XNNPACK available: True\n\nCPU:\nArchitecture: x86_64\nCPU op-mode(s): 32-bit, 64-bit\nAddress sizes: 46 bits physical, 48 bits virtual\nByte Order: Little Endian\nCPU(s): 24\nOn-line CPU(s) list: 0-23\nVendor ID: GenuineIntel\nModel name: Intel(R) Xeon(R) CPU @ 2.20GHz\nCPU family: 6\nModel: 85\nThread(s) per core: 2\nCore(s) per socket: 12\nSocket(s): 1\nStepping: 7\nBogoMIPS: 4400.47\nFlags: fpu vme de pse tsc msr pae mce cx8 apic sep mtrr pge mca cmov pat pse36 clflush mmx fxsr sse sse2 ss ht syscall nx pdpe1gb rdtscp lm constant_tsc rep_good nopl xtopology nonstop_tsc cpuid tsc_known_freq pni pclmulqdq ssse3 fma cx16 pcid sse4_1 sse4_2 x2apic movbe popcnt aes xsave avx f16c rdrand hypervisor lahf_lm abm 3dnowprefetch invpcid_single ssbd ibrs ibpb stibp ibrs_enhanced fsgsbase tsc_adjust bmi1 hle avx2 smep bmi2 erms invpcid rtm mpx avx512f avx512dq rdseed adx smap clflushopt clwb avx512cd avx512bw avx512vl xsaveopt xsavec xgetbv1 xsaves arat avx512_vnni md_clear arch_capabilities\nHypervisor vendor: KVM\nVirtualization type: full\nL1d cache: 384 KiB (12 instances)\nL1i cache: 384 KiB (12 instances)\nL2 cache: 12 MiB (12 instances)\nL3 cache: 38.5 MiB (1 instance)\nNUMA node(s): 1\nNUMA node0 CPU(s): 0-23\nVulnerability Gather data sampling: Not affected\nVulnerability Itlb multihit: Not affected\nVulnerability L1tf: Not affected\nVulnerability Mds: Mitigation; Clear CPU buffers; SMT Host state unknown\nVulnerability Meltdown: Not affected\nVulnerability Mmio stale data: Vulnerable: Clear CPU buffers attempted, no microcode; SMT Host state unknown\nVulnerability Retbleed: Mitigation; Enhanced IBRS\nVulnerability Spec rstack overflow: Not affected\nVulnerability Spec store bypass: Mitigation; Speculative Store Bypass disabled via prctl\nVulnerability Spectre v1: Mitigation; usercopy/swapgs barriers and __user pointer sanitization\nVulnerability Spectre v2: Mitigation; Enhanced / Automatic IBRS; IBPB conditional; RSB filling; PBRSB-eIBRS SW sequence; BHI Syscall hardening, KVM SW loop\nVulnerability Srbds: Not affected\nVulnerability Tsx async abort: Mitigation; Clear CPU buffers; SMT Host state unknown\n\nVersions of relevant libraries:\n[pip3] numpy==2.0.0\n[pip3] torch==2.3.1\n[pip3] triton==2.3.1\n[conda] Could not collect",
149
+ "transformers_version": "4.41.2",
150
+ "upper_git_hash": null,
151
+ "tokenizer_pad_token": [
152
+ "<unk>",
153
+ 0
154
+ ],
155
+ "tokenizer_eos_token": [
156
+ "</s>",
157
+ 2
158
+ ],
159
+ "tokenizer_bos_token": [
160
+ "<s>",
161
+ 1
162
+ ],
163
+ "eot_token_id": 2,
164
+ "max_length": 32768,
165
+ "task_hashes": {},
166
+ "model_source": "hf",
167
+ "model_name": "jondurbin/airoboros-m-7b-3.1.2",
168
+ "model_name_sanitized": "jondurbin__airoboros-m-7b-3.1.2",
169
+ "system_instruction": null,
170
+ "system_instruction_sha": null,
171
+ "fewshot_as_multiturn": false,
172
+ "chat_template": null,
173
+ "chat_template_sha": null,
174
+ "start_time": 74536.468290869,
175
+ "end_time": 76047.79978283,
176
+ "total_evaluation_time_seconds": "1511.3314919609984"
177
+ }
jondurbin__cinematika-7b-v0.1/results_2024-06-27T23-16-51.732979.json ADDED
@@ -0,0 +1,177 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "results": {
3
+ "hellaswag": {
4
+ "acc,none": 0.6138219478191596,
5
+ "acc_stderr,none": 0.004858771963468838,
6
+ "acc_norm,none": 0.8031268671579367,
7
+ "acc_norm_stderr,none": 0.00396822985262125,
8
+ "alias": "hellaswag"
9
+ },
10
+ "eq_bench": {
11
+ "eqbench,none": 44.84948931109151,
12
+ "eqbench_stderr,none": 3.1571076496385277,
13
+ "percent_parseable,none": 100.0,
14
+ "percent_parseable_stderr,none": 0.0,
15
+ "alias": "eq_bench"
16
+ }
17
+ },
18
+ "group_subtasks": {
19
+ "eq_bench": [],
20
+ "hellaswag": []
21
+ },
22
+ "configs": {
23
+ "eq_bench": {
24
+ "task": "eq_bench",
25
+ "dataset_path": "pbevan11/EQ-Bench",
26
+ "validation_split": "validation",
27
+ "doc_to_text": "prompt",
28
+ "doc_to_target": "reference_answer_fullscale",
29
+ "process_results": "def calculate_score_fullscale(docs, results):\n reference = eval(docs[\"reference_answer_fullscale\"])\n user = dict(re.findall(r\"(\\w+):\\s+(\\d+)\", results[0]))\n # First check that the emotions specified in the answer match those in the reference\n if len(user.items()) != 4:\n # print('! Error: 4 emotions were not returned')\n # print(user)\n return {\"eqbench\": 0, \"percent_parseable\": 0}\n emotions_dict = {}\n for emotion, user_emotion_score in user.items():\n for i in range(1, 5):\n if emotion == reference[f\"emotion{i}\"]:\n emotions_dict[emotion] = True\n if len(emotions_dict) != 4:\n print(\"! Error: emotions did not match reference\")\n print(user)\n return {\"eqbench\": 0, \"percent_parseable\": 0}\n\n difference_tally = (\n 0 # Tally of differerence from reference answers for this question\n )\n\n # Iterate over each emotion in the user's answers.\n for emotion, user_emotion_score in user.items():\n # If this emotion is in the reference, calculate the difference between the user's score and the reference score.\n for i in range(1, 5):\n if emotion == reference[f\"emotion{i}\"]:\n d = abs(\n float(user_emotion_score) - float(reference[f\"emotion{i}_score\"])\n )\n # this will be a value between 0 and 10\n if d == 0:\n scaled_difference = 0\n elif d <= 5:\n # S-shaped scaling function\n # https://www.desmos.com/calculator\n # 6.5\\cdot\\ \\frac{1}{\\left(1\\ +\\ e^{\\left(-1.2\\cdot\\left(x-4\\right)\\right)}\\right)}\n scaled_difference = 6.5 * (1 / (1 + math.e ** (-1.2 * (d - 4))))\n\n else:\n scaled_difference = d\n difference_tally += scaled_difference\n\n # Inverting the difference tally so that the closer the answer is to reference, the higher the score.\n # The adjustment constant is chosen such that answering randomly produces a score of zero.\n adjust_const = 0.7477\n final_score = 10 - (difference_tally * adjust_const)\n final_score_percent = final_score * 10\n\n return {\"eqbench\": final_score_percent, \"percent_parseable\": 100}\n",
30
+ "description": "",
31
+ "target_delimiter": " ",
32
+ "fewshot_delimiter": "\n\n",
33
+ "num_fewshot": 0,
34
+ "metric_list": [
35
+ {
36
+ "metric": "eqbench",
37
+ "aggregation": "mean",
38
+ "higher_is_better": true
39
+ },
40
+ {
41
+ "metric": "percent_parseable",
42
+ "aggregation": "mean",
43
+ "higher_is_better": true
44
+ }
45
+ ],
46
+ "output_type": "generate_until",
47
+ "generation_kwargs": {
48
+ "do_sample": false,
49
+ "temperature": 0.0,
50
+ "max_gen_toks": 80,
51
+ "until": [
52
+ "\n\n"
53
+ ]
54
+ },
55
+ "repeats": 1,
56
+ "should_decontaminate": false,
57
+ "metadata": {
58
+ "version": 2.1
59
+ }
60
+ },
61
+ "hellaswag": {
62
+ "task": "hellaswag",
63
+ "group": [
64
+ "multiple_choice"
65
+ ],
66
+ "dataset_path": "hellaswag",
67
+ "training_split": "train",
68
+ "validation_split": "validation",
69
+ "process_docs": "def process_docs(dataset: datasets.Dataset) -> datasets.Dataset:\n def _process_doc(doc):\n ctx = doc[\"ctx_a\"] + \" \" + doc[\"ctx_b\"].capitalize()\n out_doc = {\n \"query\": preprocess(doc[\"activity_label\"] + \": \" + ctx),\n \"choices\": [preprocess(ending) for ending in doc[\"endings\"]],\n \"gold\": int(doc[\"label\"]),\n }\n return out_doc\n\n return dataset.map(_process_doc)\n",
70
+ "doc_to_text": "{{query}}",
71
+ "doc_to_target": "{{label}}",
72
+ "doc_to_choice": "choices",
73
+ "description": "",
74
+ "target_delimiter": " ",
75
+ "fewshot_delimiter": "\n\n",
76
+ "num_fewshot": 0,
77
+ "metric_list": [
78
+ {
79
+ "metric": "acc",
80
+ "aggregation": "mean",
81
+ "higher_is_better": true
82
+ },
83
+ {
84
+ "metric": "acc_norm",
85
+ "aggregation": "mean",
86
+ "higher_is_better": true
87
+ }
88
+ ],
89
+ "output_type": "multiple_choice",
90
+ "repeats": 1,
91
+ "should_decontaminate": false,
92
+ "metadata": {
93
+ "version": 1.0
94
+ }
95
+ }
96
+ },
97
+ "versions": {
98
+ "eq_bench": 2.1,
99
+ "hellaswag": 1.0
100
+ },
101
+ "n-shot": {
102
+ "eq_bench": 0,
103
+ "hellaswag": 0
104
+ },
105
+ "higher_is_better": {
106
+ "eq_bench": {
107
+ "eqbench": true,
108
+ "percent_parseable": true
109
+ },
110
+ "hellaswag": {
111
+ "acc": true,
112
+ "acc_norm": true
113
+ }
114
+ },
115
+ "n-samples": {
116
+ "hellaswag": {
117
+ "original": 10042,
118
+ "effective": 10042
119
+ },
120
+ "eq_bench": {
121
+ "original": 171,
122
+ "effective": 171
123
+ }
124
+ },
125
+ "config": {
126
+ "model": "hf",
127
+ "model_args": "pretrained=jondurbin/cinematika-7b-v0.1,trust_remote_code=True",
128
+ "model_num_parameters": 7241756672,
129
+ "model_dtype": "torch.bfloat16",
130
+ "model_revision": "main",
131
+ "model_sha": "6df1846af7de7ab8e2201ad87071ed661e3b0de2",
132
+ "batch_size": "auto",
133
+ "batch_sizes": [
134
+ 64
135
+ ],
136
+ "device": null,
137
+ "use_cache": null,
138
+ "limit": null,
139
+ "bootstrap_iters": 100000,
140
+ "gen_kwargs": null,
141
+ "random_seed": 0,
142
+ "numpy_seed": 1234,
143
+ "torch_seed": 1234,
144
+ "fewshot_seed": 1234
145
+ },
146
+ "git_hash": null,
147
+ "date": 1719528705.1154015,
148
+ "pretty_env_info": "PyTorch version: 2.3.1+cu121\nIs debug build: False\nCUDA used to build PyTorch: 12.1\nROCM used to build PyTorch: N/A\n\nOS: Ubuntu 22.04.4 LTS (x86_64)\nGCC version: (Ubuntu 11.4.0-1ubuntu1~22.04) 11.4.0\nClang version: Could not collect\nCMake version: Could not collect\nLibc version: glibc-2.35\n\nPython version: 3.10.12 (main, Nov 20 2023, 15:14:05) [GCC 11.4.0] (64-bit runtime)\nPython platform: Linux-6.5.0-1022-gcp-x86_64-with-glibc2.35\nIs CUDA available: True\nCUDA runtime version: 12.1.105\nCUDA_MODULE_LOADING set to: LAZY\nGPU models and configuration: \nGPU 0: NVIDIA L4\nGPU 1: NVIDIA L4\n\nNvidia driver version: 555.42.02\ncuDNN version: Could not collect\nHIP runtime version: N/A\nMIOpen runtime version: N/A\nIs XNNPACK available: True\n\nCPU:\nArchitecture: x86_64\nCPU op-mode(s): 32-bit, 64-bit\nAddress sizes: 46 bits physical, 48 bits virtual\nByte Order: Little Endian\nCPU(s): 24\nOn-line CPU(s) list: 0-23\nVendor ID: GenuineIntel\nModel name: Intel(R) Xeon(R) CPU @ 2.20GHz\nCPU family: 6\nModel: 85\nThread(s) per core: 2\nCore(s) per socket: 12\nSocket(s): 1\nStepping: 7\nBogoMIPS: 4400.47\nFlags: fpu vme de pse tsc msr pae mce cx8 apic sep mtrr pge mca cmov pat pse36 clflush mmx fxsr sse sse2 ss ht syscall nx pdpe1gb rdtscp lm constant_tsc rep_good nopl xtopology nonstop_tsc cpuid tsc_known_freq pni pclmulqdq ssse3 fma cx16 pcid sse4_1 sse4_2 x2apic movbe popcnt aes xsave avx f16c rdrand hypervisor lahf_lm abm 3dnowprefetch invpcid_single ssbd ibrs ibpb stibp ibrs_enhanced fsgsbase tsc_adjust bmi1 hle avx2 smep bmi2 erms invpcid rtm mpx avx512f avx512dq rdseed adx smap clflushopt clwb avx512cd avx512bw avx512vl xsaveopt xsavec xgetbv1 xsaves arat avx512_vnni md_clear arch_capabilities\nHypervisor vendor: KVM\nVirtualization type: full\nL1d cache: 384 KiB (12 instances)\nL1i cache: 384 KiB (12 instances)\nL2 cache: 12 MiB (12 instances)\nL3 cache: 38.5 MiB (1 instance)\nNUMA node(s): 1\nNUMA node0 CPU(s): 0-23\nVulnerability Gather data sampling: Not affected\nVulnerability Itlb multihit: Not affected\nVulnerability L1tf: Not affected\nVulnerability Mds: Mitigation; Clear CPU buffers; SMT Host state unknown\nVulnerability Meltdown: Not affected\nVulnerability Mmio stale data: Vulnerable: Clear CPU buffers attempted, no microcode; SMT Host state unknown\nVulnerability Retbleed: Mitigation; Enhanced IBRS\nVulnerability Spec rstack overflow: Not affected\nVulnerability Spec store bypass: Mitigation; Speculative Store Bypass disabled via prctl\nVulnerability Spectre v1: Mitigation; usercopy/swapgs barriers and __user pointer sanitization\nVulnerability Spectre v2: Mitigation; Enhanced / Automatic IBRS; IBPB conditional; RSB filling; PBRSB-eIBRS SW sequence; BHI Syscall hardening, KVM SW loop\nVulnerability Srbds: Not affected\nVulnerability Tsx async abort: Mitigation; Clear CPU buffers; SMT Host state unknown\n\nVersions of relevant libraries:\n[pip3] numpy==2.0.0\n[pip3] torch==2.3.1\n[pip3] triton==2.3.1\n[conda] Could not collect",
149
+ "transformers_version": "4.41.2",
150
+ "upper_git_hash": null,
151
+ "tokenizer_pad_token": [
152
+ "[PAD]",
153
+ 32000
154
+ ],
155
+ "tokenizer_eos_token": [
156
+ "</s>",
157
+ 2
158
+ ],
159
+ "tokenizer_bos_token": [
160
+ "<s>",
161
+ 1
162
+ ],
163
+ "eot_token_id": 2,
164
+ "max_length": 32768,
165
+ "task_hashes": {},
166
+ "model_source": "hf",
167
+ "model_name": "jondurbin/cinematika-7b-v0.1",
168
+ "model_name_sanitized": "jondurbin__cinematika-7b-v0.1",
169
+ "system_instruction": null,
170
+ "system_instruction_sha": null,
171
+ "fewshot_as_multiturn": false,
172
+ "chat_template": null,
173
+ "chat_template_sha": null,
174
+ "start_time": 81088.287076101,
175
+ "end_time": 82601.797810444,
176
+ "total_evaluation_time_seconds": "1513.510734342999"
177
+ }
migtissera__Synthia-7B-v3.0/results_2024-06-27T22-50-03.654626.json ADDED
@@ -0,0 +1,177 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "results": {
3
+ "hellaswag": {
4
+ "acc,none": 0.6188010356502689,
5
+ "acc_stderr,none": 0.004846886929763468,
6
+ "acc_norm,none": 0.8173670583549094,
7
+ "acc_norm_stderr,none": 0.0038557568514416335,
8
+ "alias": "hellaswag"
9
+ },
10
+ "eq_bench": {
11
+ "eqbench,none": 15.026068685500109,
12
+ "eqbench_stderr,none": 2.8920476087351132,
13
+ "percent_parseable,none": 94.73684210526316,
14
+ "percent_parseable_stderr,none": 1.7126088775157098,
15
+ "alias": "eq_bench"
16
+ }
17
+ },
18
+ "group_subtasks": {
19
+ "eq_bench": [],
20
+ "hellaswag": []
21
+ },
22
+ "configs": {
23
+ "eq_bench": {
24
+ "task": "eq_bench",
25
+ "dataset_path": "pbevan11/EQ-Bench",
26
+ "validation_split": "validation",
27
+ "doc_to_text": "prompt",
28
+ "doc_to_target": "reference_answer_fullscale",
29
+ "process_results": "def calculate_score_fullscale(docs, results):\n reference = eval(docs[\"reference_answer_fullscale\"])\n user = dict(re.findall(r\"(\\w+):\\s+(\\d+)\", results[0]))\n # First check that the emotions specified in the answer match those in the reference\n if len(user.items()) != 4:\n # print('! Error: 4 emotions were not returned')\n # print(user)\n return {\"eqbench\": 0, \"percent_parseable\": 0}\n emotions_dict = {}\n for emotion, user_emotion_score in user.items():\n for i in range(1, 5):\n if emotion == reference[f\"emotion{i}\"]:\n emotions_dict[emotion] = True\n if len(emotions_dict) != 4:\n print(\"! Error: emotions did not match reference\")\n print(user)\n return {\"eqbench\": 0, \"percent_parseable\": 0}\n\n difference_tally = (\n 0 # Tally of differerence from reference answers for this question\n )\n\n # Iterate over each emotion in the user's answers.\n for emotion, user_emotion_score in user.items():\n # If this emotion is in the reference, calculate the difference between the user's score and the reference score.\n for i in range(1, 5):\n if emotion == reference[f\"emotion{i}\"]:\n d = abs(\n float(user_emotion_score) - float(reference[f\"emotion{i}_score\"])\n )\n # this will be a value between 0 and 10\n if d == 0:\n scaled_difference = 0\n elif d <= 5:\n # S-shaped scaling function\n # https://www.desmos.com/calculator\n # 6.5\\cdot\\ \\frac{1}{\\left(1\\ +\\ e^{\\left(-1.2\\cdot\\left(x-4\\right)\\right)}\\right)}\n scaled_difference = 6.5 * (1 / (1 + math.e ** (-1.2 * (d - 4))))\n\n else:\n scaled_difference = d\n difference_tally += scaled_difference\n\n # Inverting the difference tally so that the closer the answer is to reference, the higher the score.\n # The adjustment constant is chosen such that answering randomly produces a score of zero.\n adjust_const = 0.7477\n final_score = 10 - (difference_tally * adjust_const)\n final_score_percent = final_score * 10\n\n return {\"eqbench\": final_score_percent, \"percent_parseable\": 100}\n",
30
+ "description": "",
31
+ "target_delimiter": " ",
32
+ "fewshot_delimiter": "\n\n",
33
+ "num_fewshot": 0,
34
+ "metric_list": [
35
+ {
36
+ "metric": "eqbench",
37
+ "aggregation": "mean",
38
+ "higher_is_better": true
39
+ },
40
+ {
41
+ "metric": "percent_parseable",
42
+ "aggregation": "mean",
43
+ "higher_is_better": true
44
+ }
45
+ ],
46
+ "output_type": "generate_until",
47
+ "generation_kwargs": {
48
+ "do_sample": false,
49
+ "temperature": 0.0,
50
+ "max_gen_toks": 80,
51
+ "until": [
52
+ "\n\n"
53
+ ]
54
+ },
55
+ "repeats": 1,
56
+ "should_decontaminate": false,
57
+ "metadata": {
58
+ "version": 2.1
59
+ }
60
+ },
61
+ "hellaswag": {
62
+ "task": "hellaswag",
63
+ "group": [
64
+ "multiple_choice"
65
+ ],
66
+ "dataset_path": "hellaswag",
67
+ "training_split": "train",
68
+ "validation_split": "validation",
69
+ "process_docs": "def process_docs(dataset: datasets.Dataset) -> datasets.Dataset:\n def _process_doc(doc):\n ctx = doc[\"ctx_a\"] + \" \" + doc[\"ctx_b\"].capitalize()\n out_doc = {\n \"query\": preprocess(doc[\"activity_label\"] + \": \" + ctx),\n \"choices\": [preprocess(ending) for ending in doc[\"endings\"]],\n \"gold\": int(doc[\"label\"]),\n }\n return out_doc\n\n return dataset.map(_process_doc)\n",
70
+ "doc_to_text": "{{query}}",
71
+ "doc_to_target": "{{label}}",
72
+ "doc_to_choice": "choices",
73
+ "description": "",
74
+ "target_delimiter": " ",
75
+ "fewshot_delimiter": "\n\n",
76
+ "num_fewshot": 0,
77
+ "metric_list": [
78
+ {
79
+ "metric": "acc",
80
+ "aggregation": "mean",
81
+ "higher_is_better": true
82
+ },
83
+ {
84
+ "metric": "acc_norm",
85
+ "aggregation": "mean",
86
+ "higher_is_better": true
87
+ }
88
+ ],
89
+ "output_type": "multiple_choice",
90
+ "repeats": 1,
91
+ "should_decontaminate": false,
92
+ "metadata": {
93
+ "version": 1.0
94
+ }
95
+ }
96
+ },
97
+ "versions": {
98
+ "eq_bench": 2.1,
99
+ "hellaswag": 1.0
100
+ },
101
+ "n-shot": {
102
+ "eq_bench": 0,
103
+ "hellaswag": 0
104
+ },
105
+ "higher_is_better": {
106
+ "eq_bench": {
107
+ "eqbench": true,
108
+ "percent_parseable": true
109
+ },
110
+ "hellaswag": {
111
+ "acc": true,
112
+ "acc_norm": true
113
+ }
114
+ },
115
+ "n-samples": {
116
+ "hellaswag": {
117
+ "original": 10042,
118
+ "effective": 10042
119
+ },
120
+ "eq_bench": {
121
+ "original": 171,
122
+ "effective": 171
123
+ }
124
+ },
125
+ "config": {
126
+ "model": "hf",
127
+ "model_args": "pretrained=migtissera/Synthia-7B-v3.0,trust_remote_code=True",
128
+ "model_num_parameters": 7241732096,
129
+ "model_dtype": "torch.float16",
130
+ "model_revision": "main",
131
+ "model_sha": "93c2e8b8055b42779f2b68059ebe38af6f2789c4",
132
+ "batch_size": "auto",
133
+ "batch_sizes": [
134
+ 64
135
+ ],
136
+ "device": null,
137
+ "use_cache": null,
138
+ "limit": null,
139
+ "bootstrap_iters": 100000,
140
+ "gen_kwargs": null,
141
+ "random_seed": 0,
142
+ "numpy_seed": 1234,
143
+ "torch_seed": 1234,
144
+ "fewshot_seed": 1234
145
+ },
146
+ "git_hash": null,
147
+ "date": 1719527019.219691,
148
+ "pretty_env_info": "PyTorch version: 2.3.1+cu121\nIs debug build: False\nCUDA used to build PyTorch: 12.1\nROCM used to build PyTorch: N/A\n\nOS: Ubuntu 22.04.4 LTS (x86_64)\nGCC version: (Ubuntu 11.4.0-1ubuntu1~22.04) 11.4.0\nClang version: Could not collect\nCMake version: Could not collect\nLibc version: glibc-2.35\n\nPython version: 3.10.12 (main, Nov 20 2023, 15:14:05) [GCC 11.4.0] (64-bit runtime)\nPython platform: Linux-6.5.0-1022-gcp-x86_64-with-glibc2.35\nIs CUDA available: True\nCUDA runtime version: 12.1.105\nCUDA_MODULE_LOADING set to: LAZY\nGPU models and configuration: \nGPU 0: NVIDIA L4\nGPU 1: NVIDIA L4\n\nNvidia driver version: 555.42.02\ncuDNN version: Could not collect\nHIP runtime version: N/A\nMIOpen runtime version: N/A\nIs XNNPACK available: True\n\nCPU:\nArchitecture: x86_64\nCPU op-mode(s): 32-bit, 64-bit\nAddress sizes: 46 bits physical, 48 bits virtual\nByte Order: Little Endian\nCPU(s): 24\nOn-line CPU(s) list: 0-23\nVendor ID: GenuineIntel\nModel name: Intel(R) Xeon(R) CPU @ 2.20GHz\nCPU family: 6\nModel: 85\nThread(s) per core: 2\nCore(s) per socket: 12\nSocket(s): 1\nStepping: 7\nBogoMIPS: 4400.47\nFlags: fpu vme de pse tsc msr pae mce cx8 apic sep mtrr pge mca cmov pat pse36 clflush mmx fxsr sse sse2 ss ht syscall nx pdpe1gb rdtscp lm constant_tsc rep_good nopl xtopology nonstop_tsc cpuid tsc_known_freq pni pclmulqdq ssse3 fma cx16 pcid sse4_1 sse4_2 x2apic movbe popcnt aes xsave avx f16c rdrand hypervisor lahf_lm abm 3dnowprefetch invpcid_single ssbd ibrs ibpb stibp ibrs_enhanced fsgsbase tsc_adjust bmi1 hle avx2 smep bmi2 erms invpcid rtm mpx avx512f avx512dq rdseed adx smap clflushopt clwb avx512cd avx512bw avx512vl xsaveopt xsavec xgetbv1 xsaves arat avx512_vnni md_clear arch_capabilities\nHypervisor vendor: KVM\nVirtualization type: full\nL1d cache: 384 KiB (12 instances)\nL1i cache: 384 KiB (12 instances)\nL2 cache: 12 MiB (12 instances)\nL3 cache: 38.5 MiB (1 instance)\nNUMA node(s): 1\nNUMA node0 CPU(s): 0-23\nVulnerability Gather data sampling: Not affected\nVulnerability Itlb multihit: Not affected\nVulnerability L1tf: Not affected\nVulnerability Mds: Mitigation; Clear CPU buffers; SMT Host state unknown\nVulnerability Meltdown: Not affected\nVulnerability Mmio stale data: Vulnerable: Clear CPU buffers attempted, no microcode; SMT Host state unknown\nVulnerability Retbleed: Mitigation; Enhanced IBRS\nVulnerability Spec rstack overflow: Not affected\nVulnerability Spec store bypass: Mitigation; Speculative Store Bypass disabled via prctl\nVulnerability Spectre v1: Mitigation; usercopy/swapgs barriers and __user pointer sanitization\nVulnerability Spectre v2: Mitigation; Enhanced / Automatic IBRS; IBPB conditional; RSB filling; PBRSB-eIBRS SW sequence; BHI Syscall hardening, KVM SW loop\nVulnerability Srbds: Not affected\nVulnerability Tsx async abort: Mitigation; Clear CPU buffers; SMT Host state unknown\n\nVersions of relevant libraries:\n[pip3] numpy==2.0.0\n[pip3] torch==2.3.1\n[pip3] triton==2.3.1\n[conda] Could not collect",
149
+ "transformers_version": "4.41.2",
150
+ "upper_git_hash": null,
151
+ "tokenizer_pad_token": [
152
+ "<unk>",
153
+ 0
154
+ ],
155
+ "tokenizer_eos_token": [
156
+ "</s>",
157
+ 2
158
+ ],
159
+ "tokenizer_bos_token": [
160
+ "<s>",
161
+ 1
162
+ ],
163
+ "eot_token_id": 2,
164
+ "max_length": 32768,
165
+ "task_hashes": {},
166
+ "model_source": "hf",
167
+ "model_name": "migtissera/Synthia-7B-v3.0",
168
+ "model_name_sanitized": "migtissera__Synthia-7B-v3.0",
169
+ "system_instruction": null,
170
+ "system_instruction_sha": null,
171
+ "fewshot_as_multiturn": false,
172
+ "chat_template": null,
173
+ "chat_template_sha": null,
174
+ "start_time": 79402.540235241,
175
+ "end_time": 80993.719447117,
176
+ "total_evaluation_time_seconds": "1591.1792118759913"
177
+ }
mlabonne__NeuralBeagle14-7B/results_2024-06-28T00-10-47.687175.json ADDED
@@ -0,0 +1,177 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "results": {
3
+ "hellaswag": {
4
+ "acc,none": 0.7003584943238399,
5
+ "acc_stderr,none": 0.004571647137441099,
6
+ "acc_norm,none": 0.8645688109938259,
7
+ "acc_norm_stderr,none": 0.003414842236516961,
8
+ "alias": "hellaswag"
9
+ },
10
+ "eq_bench": {
11
+ "eqbench,none": 74.20803234078544,
12
+ "eqbench_stderr,none": 1.9057062958788094,
13
+ "percent_parseable,none": 99.41520467836257,
14
+ "percent_parseable_stderr,none": 0.5847953216374271,
15
+ "alias": "eq_bench"
16
+ }
17
+ },
18
+ "group_subtasks": {
19
+ "eq_bench": [],
20
+ "hellaswag": []
21
+ },
22
+ "configs": {
23
+ "eq_bench": {
24
+ "task": "eq_bench",
25
+ "dataset_path": "pbevan11/EQ-Bench",
26
+ "validation_split": "validation",
27
+ "doc_to_text": "prompt",
28
+ "doc_to_target": "reference_answer_fullscale",
29
+ "process_results": "def calculate_score_fullscale(docs, results):\n reference = eval(docs[\"reference_answer_fullscale\"])\n user = dict(re.findall(r\"(\\w+):\\s+(\\d+)\", results[0]))\n # First check that the emotions specified in the answer match those in the reference\n if len(user.items()) != 4:\n # print('! Error: 4 emotions were not returned')\n # print(user)\n return {\"eqbench\": 0, \"percent_parseable\": 0}\n emotions_dict = {}\n for emotion, user_emotion_score in user.items():\n for i in range(1, 5):\n if emotion == reference[f\"emotion{i}\"]:\n emotions_dict[emotion] = True\n if len(emotions_dict) != 4:\n print(\"! Error: emotions did not match reference\")\n print(user)\n return {\"eqbench\": 0, \"percent_parseable\": 0}\n\n difference_tally = (\n 0 # Tally of differerence from reference answers for this question\n )\n\n # Iterate over each emotion in the user's answers.\n for emotion, user_emotion_score in user.items():\n # If this emotion is in the reference, calculate the difference between the user's score and the reference score.\n for i in range(1, 5):\n if emotion == reference[f\"emotion{i}\"]:\n d = abs(\n float(user_emotion_score) - float(reference[f\"emotion{i}_score\"])\n )\n # this will be a value between 0 and 10\n if d == 0:\n scaled_difference = 0\n elif d <= 5:\n # S-shaped scaling function\n # https://www.desmos.com/calculator\n # 6.5\\cdot\\ \\frac{1}{\\left(1\\ +\\ e^{\\left(-1.2\\cdot\\left(x-4\\right)\\right)}\\right)}\n scaled_difference = 6.5 * (1 / (1 + math.e ** (-1.2 * (d - 4))))\n\n else:\n scaled_difference = d\n difference_tally += scaled_difference\n\n # Inverting the difference tally so that the closer the answer is to reference, the higher the score.\n # The adjustment constant is chosen such that answering randomly produces a score of zero.\n adjust_const = 0.7477\n final_score = 10 - (difference_tally * adjust_const)\n final_score_percent = final_score * 10\n\n return {\"eqbench\": final_score_percent, \"percent_parseable\": 100}\n",
30
+ "description": "",
31
+ "target_delimiter": " ",
32
+ "fewshot_delimiter": "\n\n",
33
+ "num_fewshot": 0,
34
+ "metric_list": [
35
+ {
36
+ "metric": "eqbench",
37
+ "aggregation": "mean",
38
+ "higher_is_better": true
39
+ },
40
+ {
41
+ "metric": "percent_parseable",
42
+ "aggregation": "mean",
43
+ "higher_is_better": true
44
+ }
45
+ ],
46
+ "output_type": "generate_until",
47
+ "generation_kwargs": {
48
+ "do_sample": false,
49
+ "temperature": 0.0,
50
+ "max_gen_toks": 80,
51
+ "until": [
52
+ "\n\n"
53
+ ]
54
+ },
55
+ "repeats": 1,
56
+ "should_decontaminate": false,
57
+ "metadata": {
58
+ "version": 2.1
59
+ }
60
+ },
61
+ "hellaswag": {
62
+ "task": "hellaswag",
63
+ "group": [
64
+ "multiple_choice"
65
+ ],
66
+ "dataset_path": "hellaswag",
67
+ "training_split": "train",
68
+ "validation_split": "validation",
69
+ "process_docs": "def process_docs(dataset: datasets.Dataset) -> datasets.Dataset:\n def _process_doc(doc):\n ctx = doc[\"ctx_a\"] + \" \" + doc[\"ctx_b\"].capitalize()\n out_doc = {\n \"query\": preprocess(doc[\"activity_label\"] + \": \" + ctx),\n \"choices\": [preprocess(ending) for ending in doc[\"endings\"]],\n \"gold\": int(doc[\"label\"]),\n }\n return out_doc\n\n return dataset.map(_process_doc)\n",
70
+ "doc_to_text": "{{query}}",
71
+ "doc_to_target": "{{label}}",
72
+ "doc_to_choice": "choices",
73
+ "description": "",
74
+ "target_delimiter": " ",
75
+ "fewshot_delimiter": "\n\n",
76
+ "num_fewshot": 0,
77
+ "metric_list": [
78
+ {
79
+ "metric": "acc",
80
+ "aggregation": "mean",
81
+ "higher_is_better": true
82
+ },
83
+ {
84
+ "metric": "acc_norm",
85
+ "aggregation": "mean",
86
+ "higher_is_better": true
87
+ }
88
+ ],
89
+ "output_type": "multiple_choice",
90
+ "repeats": 1,
91
+ "should_decontaminate": false,
92
+ "metadata": {
93
+ "version": 1.0
94
+ }
95
+ }
96
+ },
97
+ "versions": {
98
+ "eq_bench": 2.1,
99
+ "hellaswag": 1.0
100
+ },
101
+ "n-shot": {
102
+ "eq_bench": 0,
103
+ "hellaswag": 0
104
+ },
105
+ "higher_is_better": {
106
+ "eq_bench": {
107
+ "eqbench": true,
108
+ "percent_parseable": true
109
+ },
110
+ "hellaswag": {
111
+ "acc": true,
112
+ "acc_norm": true
113
+ }
114
+ },
115
+ "n-samples": {
116
+ "hellaswag": {
117
+ "original": 10042,
118
+ "effective": 10042
119
+ },
120
+ "eq_bench": {
121
+ "original": 171,
122
+ "effective": 171
123
+ }
124
+ },
125
+ "config": {
126
+ "model": "hf",
127
+ "model_args": "pretrained=mlabonne/NeuralBeagle14-7B,trust_remote_code=True",
128
+ "model_num_parameters": 7241732096,
129
+ "model_dtype": "torch.float16",
130
+ "model_revision": "main",
131
+ "model_sha": "1567ad618a0998139654cb355738bb9bc018ca64",
132
+ "batch_size": "auto",
133
+ "batch_sizes": [
134
+ 64
135
+ ],
136
+ "device": null,
137
+ "use_cache": null,
138
+ "limit": null,
139
+ "bootstrap_iters": 100000,
140
+ "gen_kwargs": null,
141
+ "random_seed": 0,
142
+ "numpy_seed": 1234,
143
+ "torch_seed": 1234,
144
+ "fewshot_seed": 1234
145
+ },
146
+ "git_hash": null,
147
+ "date": 1719531860.3285184,
148
+ "pretty_env_info": "PyTorch version: 2.3.1+cu121\nIs debug build: False\nCUDA used to build PyTorch: 12.1\nROCM used to build PyTorch: N/A\n\nOS: Ubuntu 22.04.4 LTS (x86_64)\nGCC version: (Ubuntu 11.4.0-1ubuntu1~22.04) 11.4.0\nClang version: Could not collect\nCMake version: Could not collect\nLibc version: glibc-2.35\n\nPython version: 3.10.12 (main, Nov 20 2023, 15:14:05) [GCC 11.4.0] (64-bit runtime)\nPython platform: Linux-6.5.0-1022-gcp-x86_64-with-glibc2.35\nIs CUDA available: True\nCUDA runtime version: 12.1.105\nCUDA_MODULE_LOADING set to: LAZY\nGPU models and configuration: \nGPU 0: NVIDIA L4\nGPU 1: NVIDIA L4\n\nNvidia driver version: 555.42.02\ncuDNN version: Could not collect\nHIP runtime version: N/A\nMIOpen runtime version: N/A\nIs XNNPACK available: True\n\nCPU:\nArchitecture: x86_64\nCPU op-mode(s): 32-bit, 64-bit\nAddress sizes: 46 bits physical, 48 bits virtual\nByte Order: Little Endian\nCPU(s): 24\nOn-line CPU(s) list: 0-23\nVendor ID: GenuineIntel\nModel name: Intel(R) Xeon(R) CPU @ 2.20GHz\nCPU family: 6\nModel: 85\nThread(s) per core: 2\nCore(s) per socket: 12\nSocket(s): 1\nStepping: 7\nBogoMIPS: 4400.47\nFlags: fpu vme de pse tsc msr pae mce cx8 apic sep mtrr pge mca cmov pat pse36 clflush mmx fxsr sse sse2 ss ht syscall nx pdpe1gb rdtscp lm constant_tsc rep_good nopl xtopology nonstop_tsc cpuid tsc_known_freq pni pclmulqdq ssse3 fma cx16 pcid sse4_1 sse4_2 x2apic movbe popcnt aes xsave avx f16c rdrand hypervisor lahf_lm abm 3dnowprefetch invpcid_single ssbd ibrs ibpb stibp ibrs_enhanced fsgsbase tsc_adjust bmi1 hle avx2 smep bmi2 erms invpcid rtm mpx avx512f avx512dq rdseed adx smap clflushopt clwb avx512cd avx512bw avx512vl xsaveopt xsavec xgetbv1 xsaves arat avx512_vnni md_clear arch_capabilities\nHypervisor vendor: KVM\nVirtualization type: full\nL1d cache: 384 KiB (12 instances)\nL1i cache: 384 KiB (12 instances)\nL2 cache: 12 MiB (12 instances)\nL3 cache: 38.5 MiB (1 instance)\nNUMA node(s): 1\nNUMA node0 CPU(s): 0-23\nVulnerability Gather data sampling: Not affected\nVulnerability Itlb multihit: Not affected\nVulnerability L1tf: Not affected\nVulnerability Mds: Mitigation; Clear CPU buffers; SMT Host state unknown\nVulnerability Meltdown: Not affected\nVulnerability Mmio stale data: Vulnerable: Clear CPU buffers attempted, no microcode; SMT Host state unknown\nVulnerability Retbleed: Mitigation; Enhanced IBRS\nVulnerability Spec rstack overflow: Not affected\nVulnerability Spec store bypass: Mitigation; Speculative Store Bypass disabled via prctl\nVulnerability Spectre v1: Mitigation; usercopy/swapgs barriers and __user pointer sanitization\nVulnerability Spectre v2: Mitigation; Enhanced / Automatic IBRS; IBPB conditional; RSB filling; PBRSB-eIBRS SW sequence; BHI Syscall hardening, KVM SW loop\nVulnerability Srbds: Not affected\nVulnerability Tsx async abort: Mitigation; Clear CPU buffers; SMT Host state unknown\n\nVersions of relevant libraries:\n[pip3] numpy==2.0.0\n[pip3] torch==2.3.1\n[pip3] triton==2.3.1\n[conda] Could not collect",
149
+ "transformers_version": "4.41.2",
150
+ "upper_git_hash": null,
151
+ "tokenizer_pad_token": [
152
+ "</s>",
153
+ 2
154
+ ],
155
+ "tokenizer_eos_token": [
156
+ "</s>",
157
+ 2
158
+ ],
159
+ "tokenizer_bos_token": [
160
+ "<s>",
161
+ 1
162
+ ],
163
+ "eot_token_id": 2,
164
+ "max_length": 32768,
165
+ "task_hashes": {},
166
+ "model_source": "hf",
167
+ "model_name": "mlabonne/NeuralBeagle14-7B",
168
+ "model_name_sanitized": "mlabonne__NeuralBeagle14-7B",
169
+ "system_instruction": null,
170
+ "system_instruction_sha": null,
171
+ "fewshot_as_multiturn": false,
172
+ "chat_template": null,
173
+ "chat_template_sha": null,
174
+ "start_time": 84243.603381348,
175
+ "end_time": 85837.751968409,
176
+ "total_evaluation_time_seconds": "1594.1485870609904"
177
+ }
rwitz__go-bruins/results_2024-06-27T22-21-09.060416.json ADDED
@@ -0,0 +1,177 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "results": {
3
+ "hellaswag": {
4
+ "acc,none": 0.6664011153156741,
5
+ "acc_stderr,none": 0.0047053471376996584,
6
+ "acc_norm,none": 0.8492332204740092,
7
+ "acc_norm_stderr,none": 0.0035709011883580865,
8
+ "alias": "hellaswag"
9
+ },
10
+ "eq_bench": {
11
+ "eqbench,none": 73.61594324522352,
12
+ "eqbench_stderr,none": 1.8000447804156592,
13
+ "percent_parseable,none": 100.0,
14
+ "percent_parseable_stderr,none": 0.0,
15
+ "alias": "eq_bench"
16
+ }
17
+ },
18
+ "group_subtasks": {
19
+ "eq_bench": [],
20
+ "hellaswag": []
21
+ },
22
+ "configs": {
23
+ "eq_bench": {
24
+ "task": "eq_bench",
25
+ "dataset_path": "pbevan11/EQ-Bench",
26
+ "validation_split": "validation",
27
+ "doc_to_text": "prompt",
28
+ "doc_to_target": "reference_answer_fullscale",
29
+ "process_results": "def calculate_score_fullscale(docs, results):\n reference = eval(docs[\"reference_answer_fullscale\"])\n user = dict(re.findall(r\"(\\w+):\\s+(\\d+)\", results[0]))\n # First check that the emotions specified in the answer match those in the reference\n if len(user.items()) != 4:\n # print('! Error: 4 emotions were not returned')\n # print(user)\n return {\"eqbench\": 0, \"percent_parseable\": 0}\n emotions_dict = {}\n for emotion, user_emotion_score in user.items():\n for i in range(1, 5):\n if emotion == reference[f\"emotion{i}\"]:\n emotions_dict[emotion] = True\n if len(emotions_dict) != 4:\n print(\"! Error: emotions did not match reference\")\n print(user)\n return {\"eqbench\": 0, \"percent_parseable\": 0}\n\n difference_tally = (\n 0 # Tally of differerence from reference answers for this question\n )\n\n # Iterate over each emotion in the user's answers.\n for emotion, user_emotion_score in user.items():\n # If this emotion is in the reference, calculate the difference between the user's score and the reference score.\n for i in range(1, 5):\n if emotion == reference[f\"emotion{i}\"]:\n d = abs(\n float(user_emotion_score) - float(reference[f\"emotion{i}_score\"])\n )\n # this will be a value between 0 and 10\n if d == 0:\n scaled_difference = 0\n elif d <= 5:\n # S-shaped scaling function\n # https://www.desmos.com/calculator\n # 6.5\\cdot\\ \\frac{1}{\\left(1\\ +\\ e^{\\left(-1.2\\cdot\\left(x-4\\right)\\right)}\\right)}\n scaled_difference = 6.5 * (1 / (1 + math.e ** (-1.2 * (d - 4))))\n\n else:\n scaled_difference = d\n difference_tally += scaled_difference\n\n # Inverting the difference tally so that the closer the answer is to reference, the higher the score.\n # The adjustment constant is chosen such that answering randomly produces a score of zero.\n adjust_const = 0.7477\n final_score = 10 - (difference_tally * adjust_const)\n final_score_percent = final_score * 10\n\n return {\"eqbench\": final_score_percent, \"percent_parseable\": 100}\n",
30
+ "description": "",
31
+ "target_delimiter": " ",
32
+ "fewshot_delimiter": "\n\n",
33
+ "num_fewshot": 0,
34
+ "metric_list": [
35
+ {
36
+ "metric": "eqbench",
37
+ "aggregation": "mean",
38
+ "higher_is_better": true
39
+ },
40
+ {
41
+ "metric": "percent_parseable",
42
+ "aggregation": "mean",
43
+ "higher_is_better": true
44
+ }
45
+ ],
46
+ "output_type": "generate_until",
47
+ "generation_kwargs": {
48
+ "do_sample": false,
49
+ "temperature": 0.0,
50
+ "max_gen_toks": 80,
51
+ "until": [
52
+ "\n\n"
53
+ ]
54
+ },
55
+ "repeats": 1,
56
+ "should_decontaminate": false,
57
+ "metadata": {
58
+ "version": 2.1
59
+ }
60
+ },
61
+ "hellaswag": {
62
+ "task": "hellaswag",
63
+ "group": [
64
+ "multiple_choice"
65
+ ],
66
+ "dataset_path": "hellaswag",
67
+ "training_split": "train",
68
+ "validation_split": "validation",
69
+ "process_docs": "def process_docs(dataset: datasets.Dataset) -> datasets.Dataset:\n def _process_doc(doc):\n ctx = doc[\"ctx_a\"] + \" \" + doc[\"ctx_b\"].capitalize()\n out_doc = {\n \"query\": preprocess(doc[\"activity_label\"] + \": \" + ctx),\n \"choices\": [preprocess(ending) for ending in doc[\"endings\"]],\n \"gold\": int(doc[\"label\"]),\n }\n return out_doc\n\n return dataset.map(_process_doc)\n",
70
+ "doc_to_text": "{{query}}",
71
+ "doc_to_target": "{{label}}",
72
+ "doc_to_choice": "choices",
73
+ "description": "",
74
+ "target_delimiter": " ",
75
+ "fewshot_delimiter": "\n\n",
76
+ "num_fewshot": 0,
77
+ "metric_list": [
78
+ {
79
+ "metric": "acc",
80
+ "aggregation": "mean",
81
+ "higher_is_better": true
82
+ },
83
+ {
84
+ "metric": "acc_norm",
85
+ "aggregation": "mean",
86
+ "higher_is_better": true
87
+ }
88
+ ],
89
+ "output_type": "multiple_choice",
90
+ "repeats": 1,
91
+ "should_decontaminate": false,
92
+ "metadata": {
93
+ "version": 1.0
94
+ }
95
+ }
96
+ },
97
+ "versions": {
98
+ "eq_bench": 2.1,
99
+ "hellaswag": 1.0
100
+ },
101
+ "n-shot": {
102
+ "eq_bench": 0,
103
+ "hellaswag": 0
104
+ },
105
+ "higher_is_better": {
106
+ "eq_bench": {
107
+ "eqbench": true,
108
+ "percent_parseable": true
109
+ },
110
+ "hellaswag": {
111
+ "acc": true,
112
+ "acc_norm": true
113
+ }
114
+ },
115
+ "n-samples": {
116
+ "hellaswag": {
117
+ "original": 10042,
118
+ "effective": 10042
119
+ },
120
+ "eq_bench": {
121
+ "original": 171,
122
+ "effective": 171
123
+ }
124
+ },
125
+ "config": {
126
+ "model": "hf",
127
+ "model_args": "pretrained=rwitz/go-bruins,trust_remote_code=True",
128
+ "model_num_parameters": 7241732096,
129
+ "model_dtype": "torch.bfloat16",
130
+ "model_revision": "main",
131
+ "model_sha": "27b510cc158d83cad4f4df4f5cee65353647e080",
132
+ "batch_size": "auto",
133
+ "batch_sizes": [
134
+ 64
135
+ ],
136
+ "device": null,
137
+ "use_cache": null,
138
+ "limit": null,
139
+ "bootstrap_iters": 100000,
140
+ "gen_kwargs": null,
141
+ "random_seed": 0,
142
+ "numpy_seed": 1234,
143
+ "torch_seed": 1234,
144
+ "fewshot_seed": 1234
145
+ },
146
+ "git_hash": null,
147
+ "date": 1719525369.5356786,
148
+ "pretty_env_info": "PyTorch version: 2.3.1+cu121\nIs debug build: False\nCUDA used to build PyTorch: 12.1\nROCM used to build PyTorch: N/A\n\nOS: Ubuntu 22.04.4 LTS (x86_64)\nGCC version: (Ubuntu 11.4.0-1ubuntu1~22.04) 11.4.0\nClang version: Could not collect\nCMake version: Could not collect\nLibc version: glibc-2.35\n\nPython version: 3.10.12 (main, Nov 20 2023, 15:14:05) [GCC 11.4.0] (64-bit runtime)\nPython platform: Linux-6.5.0-1022-gcp-x86_64-with-glibc2.35\nIs CUDA available: True\nCUDA runtime version: 12.1.105\nCUDA_MODULE_LOADING set to: LAZY\nGPU models and configuration: \nGPU 0: NVIDIA L4\nGPU 1: NVIDIA L4\n\nNvidia driver version: 555.42.02\ncuDNN version: Could not collect\nHIP runtime version: N/A\nMIOpen runtime version: N/A\nIs XNNPACK available: True\n\nCPU:\nArchitecture: x86_64\nCPU op-mode(s): 32-bit, 64-bit\nAddress sizes: 46 bits physical, 48 bits virtual\nByte Order: Little Endian\nCPU(s): 24\nOn-line CPU(s) list: 0-23\nVendor ID: GenuineIntel\nModel name: Intel(R) Xeon(R) CPU @ 2.20GHz\nCPU family: 6\nModel: 85\nThread(s) per core: 2\nCore(s) per socket: 12\nSocket(s): 1\nStepping: 7\nBogoMIPS: 4400.47\nFlags: fpu vme de pse tsc msr pae mce cx8 apic sep mtrr pge mca cmov pat pse36 clflush mmx fxsr sse sse2 ss ht syscall nx pdpe1gb rdtscp lm constant_tsc rep_good nopl xtopology nonstop_tsc cpuid tsc_known_freq pni pclmulqdq ssse3 fma cx16 pcid sse4_1 sse4_2 x2apic movbe popcnt aes xsave avx f16c rdrand hypervisor lahf_lm abm 3dnowprefetch invpcid_single ssbd ibrs ibpb stibp ibrs_enhanced fsgsbase tsc_adjust bmi1 hle avx2 smep bmi2 erms invpcid rtm mpx avx512f avx512dq rdseed adx smap clflushopt clwb avx512cd avx512bw avx512vl xsaveopt xsavec xgetbv1 xsaves arat avx512_vnni md_clear arch_capabilities\nHypervisor vendor: KVM\nVirtualization type: full\nL1d cache: 384 KiB (12 instances)\nL1i cache: 384 KiB (12 instances)\nL2 cache: 12 MiB (12 instances)\nL3 cache: 38.5 MiB (1 instance)\nNUMA node(s): 1\nNUMA node0 CPU(s): 0-23\nVulnerability Gather data sampling: Not affected\nVulnerability Itlb multihit: Not affected\nVulnerability L1tf: Not affected\nVulnerability Mds: Mitigation; Clear CPU buffers; SMT Host state unknown\nVulnerability Meltdown: Not affected\nVulnerability Mmio stale data: Vulnerable: Clear CPU buffers attempted, no microcode; SMT Host state unknown\nVulnerability Retbleed: Mitigation; Enhanced IBRS\nVulnerability Spec rstack overflow: Not affected\nVulnerability Spec store bypass: Mitigation; Speculative Store Bypass disabled via prctl\nVulnerability Spectre v1: Mitigation; usercopy/swapgs barriers and __user pointer sanitization\nVulnerability Spectre v2: Mitigation; Enhanced / Automatic IBRS; IBPB conditional; RSB filling; PBRSB-eIBRS SW sequence; BHI Syscall hardening, KVM SW loop\nVulnerability Srbds: Not affected\nVulnerability Tsx async abort: Mitigation; Clear CPU buffers; SMT Host state unknown\n\nVersions of relevant libraries:\n[pip3] numpy==2.0.0\n[pip3] torch==2.3.1\n[pip3] triton==2.3.1\n[conda] Could not collect",
149
+ "transformers_version": "4.41.2",
150
+ "upper_git_hash": null,
151
+ "tokenizer_pad_token": [
152
+ "</s>",
153
+ 2
154
+ ],
155
+ "tokenizer_eos_token": [
156
+ "</s>",
157
+ 2
158
+ ],
159
+ "tokenizer_bos_token": [
160
+ "<s>",
161
+ 1
162
+ ],
163
+ "eot_token_id": 2,
164
+ "max_length": 32768,
165
+ "task_hashes": {},
166
+ "model_source": "hf",
167
+ "model_name": "rwitz/go-bruins",
168
+ "model_name_sanitized": "rwitz__go-bruins",
169
+ "system_instruction": null,
170
+ "system_instruction_sha": null,
171
+ "fewshot_as_multiturn": false,
172
+ "chat_template": null,
173
+ "chat_template_sha": null,
174
+ "start_time": 77752.802678043,
175
+ "end_time": 79259.12526582,
176
+ "total_evaluation_time_seconds": "1506.322587777002"
177
+ }
senseable__WestLake-7B-v2/results_2024-06-28T01-32-26.319492.json ADDED
@@ -0,0 +1,177 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "results": {
3
+ "hellaswag": {
4
+ "acc,none": 0.7048396733718383,
5
+ "acc_stderr,none": 0.0045518262729780865,
6
+ "acc_norm,none": 0.874228241386178,
7
+ "acc_norm_stderr,none": 0.0033091427273509244,
8
+ "alias": "hellaswag"
9
+ },
10
+ "eq_bench": {
11
+ "eqbench,none": 77.87295612615341,
12
+ "eqbench_stderr,none": 1.577200540645531,
13
+ "percent_parseable,none": 100.0,
14
+ "percent_parseable_stderr,none": 0.0,
15
+ "alias": "eq_bench"
16
+ }
17
+ },
18
+ "group_subtasks": {
19
+ "eq_bench": [],
20
+ "hellaswag": []
21
+ },
22
+ "configs": {
23
+ "eq_bench": {
24
+ "task": "eq_bench",
25
+ "dataset_path": "pbevan11/EQ-Bench",
26
+ "validation_split": "validation",
27
+ "doc_to_text": "prompt",
28
+ "doc_to_target": "reference_answer_fullscale",
29
+ "process_results": "def calculate_score_fullscale(docs, results):\n reference = eval(docs[\"reference_answer_fullscale\"])\n user = dict(re.findall(r\"(\\w+):\\s+(\\d+)\", results[0]))\n # First check that the emotions specified in the answer match those in the reference\n if len(user.items()) != 4:\n # print('! Error: 4 emotions were not returned')\n # print(user)\n return {\"eqbench\": 0, \"percent_parseable\": 0}\n emotions_dict = {}\n for emotion, user_emotion_score in user.items():\n for i in range(1, 5):\n if emotion == reference[f\"emotion{i}\"]:\n emotions_dict[emotion] = True\n if len(emotions_dict) != 4:\n print(\"! Error: emotions did not match reference\")\n print(user)\n return {\"eqbench\": 0, \"percent_parseable\": 0}\n\n difference_tally = (\n 0 # Tally of differerence from reference answers for this question\n )\n\n # Iterate over each emotion in the user's answers.\n for emotion, user_emotion_score in user.items():\n # If this emotion is in the reference, calculate the difference between the user's score and the reference score.\n for i in range(1, 5):\n if emotion == reference[f\"emotion{i}\"]:\n d = abs(\n float(user_emotion_score) - float(reference[f\"emotion{i}_score\"])\n )\n # this will be a value between 0 and 10\n if d == 0:\n scaled_difference = 0\n elif d <= 5:\n # S-shaped scaling function\n # https://www.desmos.com/calculator\n # 6.5\\cdot\\ \\frac{1}{\\left(1\\ +\\ e^{\\left(-1.2\\cdot\\left(x-4\\right)\\right)}\\right)}\n scaled_difference = 6.5 * (1 / (1 + math.e ** (-1.2 * (d - 4))))\n\n else:\n scaled_difference = d\n difference_tally += scaled_difference\n\n # Inverting the difference tally so that the closer the answer is to reference, the higher the score.\n # The adjustment constant is chosen such that answering randomly produces a score of zero.\n adjust_const = 0.7477\n final_score = 10 - (difference_tally * adjust_const)\n final_score_percent = final_score * 10\n\n return {\"eqbench\": final_score_percent, \"percent_parseable\": 100}\n",
30
+ "description": "",
31
+ "target_delimiter": " ",
32
+ "fewshot_delimiter": "\n\n",
33
+ "num_fewshot": 0,
34
+ "metric_list": [
35
+ {
36
+ "metric": "eqbench",
37
+ "aggregation": "mean",
38
+ "higher_is_better": true
39
+ },
40
+ {
41
+ "metric": "percent_parseable",
42
+ "aggregation": "mean",
43
+ "higher_is_better": true
44
+ }
45
+ ],
46
+ "output_type": "generate_until",
47
+ "generation_kwargs": {
48
+ "do_sample": false,
49
+ "temperature": 0.0,
50
+ "max_gen_toks": 80,
51
+ "until": [
52
+ "\n\n"
53
+ ]
54
+ },
55
+ "repeats": 1,
56
+ "should_decontaminate": false,
57
+ "metadata": {
58
+ "version": 2.1
59
+ }
60
+ },
61
+ "hellaswag": {
62
+ "task": "hellaswag",
63
+ "group": [
64
+ "multiple_choice"
65
+ ],
66
+ "dataset_path": "hellaswag",
67
+ "training_split": "train",
68
+ "validation_split": "validation",
69
+ "process_docs": "def process_docs(dataset: datasets.Dataset) -> datasets.Dataset:\n def _process_doc(doc):\n ctx = doc[\"ctx_a\"] + \" \" + doc[\"ctx_b\"].capitalize()\n out_doc = {\n \"query\": preprocess(doc[\"activity_label\"] + \": \" + ctx),\n \"choices\": [preprocess(ending) for ending in doc[\"endings\"]],\n \"gold\": int(doc[\"label\"]),\n }\n return out_doc\n\n return dataset.map(_process_doc)\n",
70
+ "doc_to_text": "{{query}}",
71
+ "doc_to_target": "{{label}}",
72
+ "doc_to_choice": "choices",
73
+ "description": "",
74
+ "target_delimiter": " ",
75
+ "fewshot_delimiter": "\n\n",
76
+ "num_fewshot": 0,
77
+ "metric_list": [
78
+ {
79
+ "metric": "acc",
80
+ "aggregation": "mean",
81
+ "higher_is_better": true
82
+ },
83
+ {
84
+ "metric": "acc_norm",
85
+ "aggregation": "mean",
86
+ "higher_is_better": true
87
+ }
88
+ ],
89
+ "output_type": "multiple_choice",
90
+ "repeats": 1,
91
+ "should_decontaminate": false,
92
+ "metadata": {
93
+ "version": 1.0
94
+ }
95
+ }
96
+ },
97
+ "versions": {
98
+ "eq_bench": 2.1,
99
+ "hellaswag": 1.0
100
+ },
101
+ "n-shot": {
102
+ "eq_bench": 0,
103
+ "hellaswag": 0
104
+ },
105
+ "higher_is_better": {
106
+ "eq_bench": {
107
+ "eqbench": true,
108
+ "percent_parseable": true
109
+ },
110
+ "hellaswag": {
111
+ "acc": true,
112
+ "acc_norm": true
113
+ }
114
+ },
115
+ "n-samples": {
116
+ "hellaswag": {
117
+ "original": 10042,
118
+ "effective": 10042
119
+ },
120
+ "eq_bench": {
121
+ "original": 171,
122
+ "effective": 171
123
+ }
124
+ },
125
+ "config": {
126
+ "model": "hf",
127
+ "model_args": "pretrained=senseable/WestLake-7B-v2,trust_remote_code=True",
128
+ "model_num_parameters": 7241732096,
129
+ "model_dtype": "torch.float16",
130
+ "model_revision": "main",
131
+ "model_sha": "41625004c47628837678859753b94c50c82f3bec",
132
+ "batch_size": "auto",
133
+ "batch_sizes": [
134
+ 64
135
+ ],
136
+ "device": null,
137
+ "use_cache": null,
138
+ "limit": null,
139
+ "bootstrap_iters": 100000,
140
+ "gen_kwargs": null,
141
+ "random_seed": 0,
142
+ "numpy_seed": 1234,
143
+ "torch_seed": 1234,
144
+ "fewshot_seed": 1234
145
+ },
146
+ "git_hash": null,
147
+ "date": 1719536781.997623,
148
+ "pretty_env_info": "PyTorch version: 2.3.1+cu121\nIs debug build: False\nCUDA used to build PyTorch: 12.1\nROCM used to build PyTorch: N/A\n\nOS: Ubuntu 22.04.4 LTS (x86_64)\nGCC version: (Ubuntu 11.4.0-1ubuntu1~22.04) 11.4.0\nClang version: Could not collect\nCMake version: Could not collect\nLibc version: glibc-2.35\n\nPython version: 3.10.12 (main, Nov 20 2023, 15:14:05) [GCC 11.4.0] (64-bit runtime)\nPython platform: Linux-6.5.0-1022-gcp-x86_64-with-glibc2.35\nIs CUDA available: True\nCUDA runtime version: 12.1.105\nCUDA_MODULE_LOADING set to: LAZY\nGPU models and configuration: \nGPU 0: NVIDIA L4\nGPU 1: NVIDIA L4\n\nNvidia driver version: 555.42.02\ncuDNN version: Could not collect\nHIP runtime version: N/A\nMIOpen runtime version: N/A\nIs XNNPACK available: True\n\nCPU:\nArchitecture: x86_64\nCPU op-mode(s): 32-bit, 64-bit\nAddress sizes: 46 bits physical, 48 bits virtual\nByte Order: Little Endian\nCPU(s): 24\nOn-line CPU(s) list: 0-23\nVendor ID: GenuineIntel\nModel name: Intel(R) Xeon(R) CPU @ 2.20GHz\nCPU family: 6\nModel: 85\nThread(s) per core: 2\nCore(s) per socket: 12\nSocket(s): 1\nStepping: 7\nBogoMIPS: 4400.47\nFlags: fpu vme de pse tsc msr pae mce cx8 apic sep mtrr pge mca cmov pat pse36 clflush mmx fxsr sse sse2 ss ht syscall nx pdpe1gb rdtscp lm constant_tsc rep_good nopl xtopology nonstop_tsc cpuid tsc_known_freq pni pclmulqdq ssse3 fma cx16 pcid sse4_1 sse4_2 x2apic movbe popcnt aes xsave avx f16c rdrand hypervisor lahf_lm abm 3dnowprefetch invpcid_single ssbd ibrs ibpb stibp ibrs_enhanced fsgsbase tsc_adjust bmi1 hle avx2 smep bmi2 erms invpcid rtm mpx avx512f avx512dq rdseed adx smap clflushopt clwb avx512cd avx512bw avx512vl xsaveopt xsavec xgetbv1 xsaves arat avx512_vnni md_clear arch_capabilities\nHypervisor vendor: KVM\nVirtualization type: full\nL1d cache: 384 KiB (12 instances)\nL1i cache: 384 KiB (12 instances)\nL2 cache: 12 MiB (12 instances)\nL3 cache: 38.5 MiB (1 instance)\nNUMA node(s): 1\nNUMA node0 CPU(s): 0-23\nVulnerability Gather data sampling: Not affected\nVulnerability Itlb multihit: Not affected\nVulnerability L1tf: Not affected\nVulnerability Mds: Mitigation; Clear CPU buffers; SMT Host state unknown\nVulnerability Meltdown: Not affected\nVulnerability Mmio stale data: Vulnerable: Clear CPU buffers attempted, no microcode; SMT Host state unknown\nVulnerability Retbleed: Mitigation; Enhanced IBRS\nVulnerability Spec rstack overflow: Not affected\nVulnerability Spec store bypass: Mitigation; Speculative Store Bypass disabled via prctl\nVulnerability Spectre v1: Mitigation; usercopy/swapgs barriers and __user pointer sanitization\nVulnerability Spectre v2: Mitigation; Enhanced / Automatic IBRS; IBPB conditional; RSB filling; PBRSB-eIBRS SW sequence; BHI Syscall hardening, KVM SW loop\nVulnerability Srbds: Not affected\nVulnerability Tsx async abort: Mitigation; Clear CPU buffers; SMT Host state unknown\n\nVersions of relevant libraries:\n[pip3] numpy==2.0.0\n[pip3] torch==2.3.1\n[pip3] triton==2.3.1\n[conda] Could not collect",
149
+ "transformers_version": "4.41.2",
150
+ "upper_git_hash": null,
151
+ "tokenizer_pad_token": [
152
+ "<unk>",
153
+ 0
154
+ ],
155
+ "tokenizer_eos_token": [
156
+ "</s>",
157
+ 2
158
+ ],
159
+ "tokenizer_bos_token": [
160
+ "<s>",
161
+ 1
162
+ ],
163
+ "eot_token_id": 2,
164
+ "max_length": 32768,
165
+ "task_hashes": {},
166
+ "model_source": "hf",
167
+ "model_name": "senseable/WestLake-7B-v2",
168
+ "model_name_sanitized": "senseable__WestLake-7B-v2",
169
+ "system_instruction": null,
170
+ "system_instruction_sha": null,
171
+ "fewshot_as_multiturn": false,
172
+ "chat_template": null,
173
+ "chat_template_sha": null,
174
+ "start_time": 89165.24699567,
175
+ "end_time": 90736.384333217,
176
+ "total_evaluation_time_seconds": "1571.1373375470139"
177
+ }
teknium__OpenHermes-2.5-Mistral-7B/results_2024-06-27T23-43-07.467674.json ADDED
@@ -0,0 +1,177 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "results": {
3
+ "hellaswag": {
4
+ "acc,none": 0.6302529376618203,
5
+ "acc_stderr,none": 0.004817495546789561,
6
+ "acc_norm,none": 0.8167695678151763,
7
+ "acc_norm_stderr,none": 0.003860646998897285,
8
+ "alias": "hellaswag"
9
+ },
10
+ "eq_bench": {
11
+ "eqbench,none": 65.75110483136034,
12
+ "eqbench_stderr,none": 2.270775919439369,
13
+ "percent_parseable,none": 100.0,
14
+ "percent_parseable_stderr,none": 0.0,
15
+ "alias": "eq_bench"
16
+ }
17
+ },
18
+ "group_subtasks": {
19
+ "eq_bench": [],
20
+ "hellaswag": []
21
+ },
22
+ "configs": {
23
+ "eq_bench": {
24
+ "task": "eq_bench",
25
+ "dataset_path": "pbevan11/EQ-Bench",
26
+ "validation_split": "validation",
27
+ "doc_to_text": "prompt",
28
+ "doc_to_target": "reference_answer_fullscale",
29
+ "process_results": "def calculate_score_fullscale(docs, results):\n reference = eval(docs[\"reference_answer_fullscale\"])\n user = dict(re.findall(r\"(\\w+):\\s+(\\d+)\", results[0]))\n # First check that the emotions specified in the answer match those in the reference\n if len(user.items()) != 4:\n # print('! Error: 4 emotions were not returned')\n # print(user)\n return {\"eqbench\": 0, \"percent_parseable\": 0}\n emotions_dict = {}\n for emotion, user_emotion_score in user.items():\n for i in range(1, 5):\n if emotion == reference[f\"emotion{i}\"]:\n emotions_dict[emotion] = True\n if len(emotions_dict) != 4:\n print(\"! Error: emotions did not match reference\")\n print(user)\n return {\"eqbench\": 0, \"percent_parseable\": 0}\n\n difference_tally = (\n 0 # Tally of differerence from reference answers for this question\n )\n\n # Iterate over each emotion in the user's answers.\n for emotion, user_emotion_score in user.items():\n # If this emotion is in the reference, calculate the difference between the user's score and the reference score.\n for i in range(1, 5):\n if emotion == reference[f\"emotion{i}\"]:\n d = abs(\n float(user_emotion_score) - float(reference[f\"emotion{i}_score\"])\n )\n # this will be a value between 0 and 10\n if d == 0:\n scaled_difference = 0\n elif d <= 5:\n # S-shaped scaling function\n # https://www.desmos.com/calculator\n # 6.5\\cdot\\ \\frac{1}{\\left(1\\ +\\ e^{\\left(-1.2\\cdot\\left(x-4\\right)\\right)}\\right)}\n scaled_difference = 6.5 * (1 / (1 + math.e ** (-1.2 * (d - 4))))\n\n else:\n scaled_difference = d\n difference_tally += scaled_difference\n\n # Inverting the difference tally so that the closer the answer is to reference, the higher the score.\n # The adjustment constant is chosen such that answering randomly produces a score of zero.\n adjust_const = 0.7477\n final_score = 10 - (difference_tally * adjust_const)\n final_score_percent = final_score * 10\n\n return {\"eqbench\": final_score_percent, \"percent_parseable\": 100}\n",
30
+ "description": "",
31
+ "target_delimiter": " ",
32
+ "fewshot_delimiter": "\n\n",
33
+ "num_fewshot": 0,
34
+ "metric_list": [
35
+ {
36
+ "metric": "eqbench",
37
+ "aggregation": "mean",
38
+ "higher_is_better": true
39
+ },
40
+ {
41
+ "metric": "percent_parseable",
42
+ "aggregation": "mean",
43
+ "higher_is_better": true
44
+ }
45
+ ],
46
+ "output_type": "generate_until",
47
+ "generation_kwargs": {
48
+ "do_sample": false,
49
+ "temperature": 0.0,
50
+ "max_gen_toks": 80,
51
+ "until": [
52
+ "\n\n"
53
+ ]
54
+ },
55
+ "repeats": 1,
56
+ "should_decontaminate": false,
57
+ "metadata": {
58
+ "version": 2.1
59
+ }
60
+ },
61
+ "hellaswag": {
62
+ "task": "hellaswag",
63
+ "group": [
64
+ "multiple_choice"
65
+ ],
66
+ "dataset_path": "hellaswag",
67
+ "training_split": "train",
68
+ "validation_split": "validation",
69
+ "process_docs": "def process_docs(dataset: datasets.Dataset) -> datasets.Dataset:\n def _process_doc(doc):\n ctx = doc[\"ctx_a\"] + \" \" + doc[\"ctx_b\"].capitalize()\n out_doc = {\n \"query\": preprocess(doc[\"activity_label\"] + \": \" + ctx),\n \"choices\": [preprocess(ending) for ending in doc[\"endings\"]],\n \"gold\": int(doc[\"label\"]),\n }\n return out_doc\n\n return dataset.map(_process_doc)\n",
70
+ "doc_to_text": "{{query}}",
71
+ "doc_to_target": "{{label}}",
72
+ "doc_to_choice": "choices",
73
+ "description": "",
74
+ "target_delimiter": " ",
75
+ "fewshot_delimiter": "\n\n",
76
+ "num_fewshot": 0,
77
+ "metric_list": [
78
+ {
79
+ "metric": "acc",
80
+ "aggregation": "mean",
81
+ "higher_is_better": true
82
+ },
83
+ {
84
+ "metric": "acc_norm",
85
+ "aggregation": "mean",
86
+ "higher_is_better": true
87
+ }
88
+ ],
89
+ "output_type": "multiple_choice",
90
+ "repeats": 1,
91
+ "should_decontaminate": false,
92
+ "metadata": {
93
+ "version": 1.0
94
+ }
95
+ }
96
+ },
97
+ "versions": {
98
+ "eq_bench": 2.1,
99
+ "hellaswag": 1.0
100
+ },
101
+ "n-shot": {
102
+ "eq_bench": 0,
103
+ "hellaswag": 0
104
+ },
105
+ "higher_is_better": {
106
+ "eq_bench": {
107
+ "eqbench": true,
108
+ "percent_parseable": true
109
+ },
110
+ "hellaswag": {
111
+ "acc": true,
112
+ "acc_norm": true
113
+ }
114
+ },
115
+ "n-samples": {
116
+ "hellaswag": {
117
+ "original": 10042,
118
+ "effective": 10042
119
+ },
120
+ "eq_bench": {
121
+ "original": 171,
122
+ "effective": 171
123
+ }
124
+ },
125
+ "config": {
126
+ "model": "hf",
127
+ "model_args": "pretrained=teknium/OpenHermes-2.5-Mistral-7B,trust_remote_code=True",
128
+ "model_num_parameters": 7241748480,
129
+ "model_dtype": "torch.bfloat16",
130
+ "model_revision": "main",
131
+ "model_sha": "24c0bea14d53e6f67f1fbe2eca5bfe7cae389b33",
132
+ "batch_size": "auto",
133
+ "batch_sizes": [
134
+ 64
135
+ ],
136
+ "device": null,
137
+ "use_cache": null,
138
+ "limit": null,
139
+ "bootstrap_iters": 100000,
140
+ "gen_kwargs": null,
141
+ "random_seed": 0,
142
+ "numpy_seed": 1234,
143
+ "torch_seed": 1234,
144
+ "fewshot_seed": 1234
145
+ },
146
+ "git_hash": null,
147
+ "date": 1719530289.0024347,
148
+ "pretty_env_info": "PyTorch version: 2.3.1+cu121\nIs debug build: False\nCUDA used to build PyTorch: 12.1\nROCM used to build PyTorch: N/A\n\nOS: Ubuntu 22.04.4 LTS (x86_64)\nGCC version: (Ubuntu 11.4.0-1ubuntu1~22.04) 11.4.0\nClang version: Could not collect\nCMake version: Could not collect\nLibc version: glibc-2.35\n\nPython version: 3.10.12 (main, Nov 20 2023, 15:14:05) [GCC 11.4.0] (64-bit runtime)\nPython platform: Linux-6.5.0-1022-gcp-x86_64-with-glibc2.35\nIs CUDA available: True\nCUDA runtime version: 12.1.105\nCUDA_MODULE_LOADING set to: LAZY\nGPU models and configuration: \nGPU 0: NVIDIA L4\nGPU 1: NVIDIA L4\n\nNvidia driver version: 555.42.02\ncuDNN version: Could not collect\nHIP runtime version: N/A\nMIOpen runtime version: N/A\nIs XNNPACK available: True\n\nCPU:\nArchitecture: x86_64\nCPU op-mode(s): 32-bit, 64-bit\nAddress sizes: 46 bits physical, 48 bits virtual\nByte Order: Little Endian\nCPU(s): 24\nOn-line CPU(s) list: 0-23\nVendor ID: GenuineIntel\nModel name: Intel(R) Xeon(R) CPU @ 2.20GHz\nCPU family: 6\nModel: 85\nThread(s) per core: 2\nCore(s) per socket: 12\nSocket(s): 1\nStepping: 7\nBogoMIPS: 4400.47\nFlags: fpu vme de pse tsc msr pae mce cx8 apic sep mtrr pge mca cmov pat pse36 clflush mmx fxsr sse sse2 ss ht syscall nx pdpe1gb rdtscp lm constant_tsc rep_good nopl xtopology nonstop_tsc cpuid tsc_known_freq pni pclmulqdq ssse3 fma cx16 pcid sse4_1 sse4_2 x2apic movbe popcnt aes xsave avx f16c rdrand hypervisor lahf_lm abm 3dnowprefetch invpcid_single ssbd ibrs ibpb stibp ibrs_enhanced fsgsbase tsc_adjust bmi1 hle avx2 smep bmi2 erms invpcid rtm mpx avx512f avx512dq rdseed adx smap clflushopt clwb avx512cd avx512bw avx512vl xsaveopt xsavec xgetbv1 xsaves arat avx512_vnni md_clear arch_capabilities\nHypervisor vendor: KVM\nVirtualization type: full\nL1d cache: 384 KiB (12 instances)\nL1i cache: 384 KiB (12 instances)\nL2 cache: 12 MiB (12 instances)\nL3 cache: 38.5 MiB (1 instance)\nNUMA node(s): 1\nNUMA node0 CPU(s): 0-23\nVulnerability Gather data sampling: Not affected\nVulnerability Itlb multihit: Not affected\nVulnerability L1tf: Not affected\nVulnerability Mds: Mitigation; Clear CPU buffers; SMT Host state unknown\nVulnerability Meltdown: Not affected\nVulnerability Mmio stale data: Vulnerable: Clear CPU buffers attempted, no microcode; SMT Host state unknown\nVulnerability Retbleed: Mitigation; Enhanced IBRS\nVulnerability Spec rstack overflow: Not affected\nVulnerability Spec store bypass: Mitigation; Speculative Store Bypass disabled via prctl\nVulnerability Spectre v1: Mitigation; usercopy/swapgs barriers and __user pointer sanitization\nVulnerability Spectre v2: Mitigation; Enhanced / Automatic IBRS; IBPB conditional; RSB filling; PBRSB-eIBRS SW sequence; BHI Syscall hardening, KVM SW loop\nVulnerability Srbds: Not affected\nVulnerability Tsx async abort: Mitigation; Clear CPU buffers; SMT Host state unknown\n\nVersions of relevant libraries:\n[pip3] numpy==2.0.0\n[pip3] torch==2.3.1\n[pip3] triton==2.3.1\n[conda] Could not collect",
149
+ "transformers_version": "4.41.2",
150
+ "upper_git_hash": null,
151
+ "tokenizer_pad_token": [
152
+ "<unk>",
153
+ 0
154
+ ],
155
+ "tokenizer_eos_token": [
156
+ "<|im_end|>",
157
+ 32000
158
+ ],
159
+ "tokenizer_bos_token": [
160
+ "<s>",
161
+ 1
162
+ ],
163
+ "eot_token_id": 32000,
164
+ "max_length": 32768,
165
+ "task_hashes": {},
166
+ "model_source": "hf",
167
+ "model_name": "teknium/OpenHermes-2.5-Mistral-7B",
168
+ "model_name_sanitized": "teknium__OpenHermes-2.5-Mistral-7B",
169
+ "system_instruction": null,
170
+ "system_instruction_sha": null,
171
+ "fewshot_as_multiturn": false,
172
+ "chat_template": null,
173
+ "chat_template_sha": null,
174
+ "start_time": 82672.316515428,
175
+ "end_time": 84177.532482507,
176
+ "total_evaluation_time_seconds": "1505.2159670789988"
177
+ }