--- license: mit base_model: FacebookAI/roberta-base tags: - generated_from_trainer datasets: - conll2003 metrics: - precision - recall - f1 - accuracy model-index: - name: RoBerta-finetuned-ner results: - task: name: Token Classification type: token-classification dataset: name: conll2003 type: conll2003 config: conll2003 split: validation args: conll2003 metrics: - name: Precision type: precision value: 0.9502164502164502 - name: Recall type: recall value: 0.9604510265903736 - name: F1 type: f1 value: 0.9553063274188148 - name: Accuracy type: accuracy value: 0.9898284802552852 --- # RoBerta-finetuned-ner This model is a fine-tuned version of [FacebookAI/roberta-base](https://huggingface.co/FacebookAI/roberta-base) on the conll2003 dataset. It achieves the following results on the evaluation set: - Loss: 0.0605 - Precision: 0.9502 - Recall: 0.9605 - F1: 0.9553 - Accuracy: 0.9898 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3 ### Training results | Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:---------:|:------:|:------:|:--------:| | 0.0248 | 1.0 | 1756 | 0.0636 | 0.9474 | 0.9547 | 0.9510 | 0.9885 | | 0.014 | 2.0 | 3512 | 0.0734 | 0.9483 | 0.9578 | 0.9530 | 0.9886 | | 0.0124 | 3.0 | 5268 | 0.0605 | 0.9502 | 0.9605 | 0.9553 | 0.9898 | ### Framework versions - Transformers 4.41.1 - Pytorch 2.3.0+cu121 - Datasets 2.19.1 - Tokenizers 0.19.1