helamri commited on
Commit
e2b1c6a
1 Parent(s): 0953d23

Initial commit

Browse files
README.md ADDED
@@ -0,0 +1,37 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ library_name: stable-baselines3
3
+ tags:
4
+ - PandaPickAndPlace-v3
5
+ - deep-reinforcement-learning
6
+ - reinforcement-learning
7
+ - stable-baselines3
8
+ model-index:
9
+ - name: A2C
10
+ results:
11
+ - task:
12
+ type: reinforcement-learning
13
+ name: reinforcement-learning
14
+ dataset:
15
+ name: PandaPickAndPlace-v3
16
+ type: PandaPickAndPlace-v3
17
+ metrics:
18
+ - type: mean_reward
19
+ value: -50.00 +/- 0.00
20
+ name: mean_reward
21
+ verified: false
22
+ ---
23
+
24
+ # **A2C** Agent playing **PandaPickAndPlace-v3**
25
+ This is a trained model of a **A2C** agent playing **PandaPickAndPlace-v3**
26
+ using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3).
27
+
28
+ ## Usage (with Stable-baselines3)
29
+ TODO: Add your code
30
+
31
+
32
+ ```python
33
+ from stable_baselines3 import ...
34
+ from huggingface_sb3 import load_from_hub
35
+
36
+ ...
37
+ ```
a2c-PandaPickAndPlace-v3.zip ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:68edc8c4f55f4e05fe1f5bcb321b7e17eed4bd24a91a234d26489c358e395fcd
3
+ size 123167
a2c-PandaPickAndPlace-v3/_stable_baselines3_version ADDED
@@ -0,0 +1 @@
 
 
1
+ 2.0.0
a2c-PandaPickAndPlace-v3/data ADDED
@@ -0,0 +1,97 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "policy_class": {
3
+ ":type:": "<class 'abc.ABCMeta'>",
4
+ ":serialized:": "gAWVRQAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMG011bHRpSW5wdXRBY3RvckNyaXRpY1BvbGljeZSTlC4=",
5
+ "__module__": "stable_baselines3.common.policies",
6
+ "__doc__": "\n MultiInputActorClass policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space (Tuple)\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Uses the CombinedExtractor\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ",
7
+ "__init__": "<function MultiInputActorCriticPolicy.__init__ at 0x7b1b680dc700>",
8
+ "__abstractmethods__": "frozenset()",
9
+ "_abc_impl": "<_abc._abc_data object at 0x7b1b680caf80>"
10
+ },
11
+ "verbose": 1,
12
+ "policy_kwargs": {
13
+ ":type:": "<class 'dict'>",
14
+ ":serialized:": "gAWVgQAAAAAAAAB9lCiMD29wdGltaXplcl9jbGFzc5SME3RvcmNoLm9wdGltLnJtc3Byb3CUjAdSTVNwcm9wlJOUjBBvcHRpbWl6ZXJfa3dhcmdzlH2UKIwFYWxwaGGURz/vrhR64UeujANlcHOURz7k+LWI42jxjAx3ZWlnaHRfZGVjYXmUSwB1dS4=",
15
+ "optimizer_class": "<class 'torch.optim.rmsprop.RMSprop'>",
16
+ "optimizer_kwargs": {
17
+ "alpha": 0.99,
18
+ "eps": 1e-05,
19
+ "weight_decay": 0
20
+ }
21
+ },
22
+ "num_timesteps": 1000000,
23
+ "_total_timesteps": 1000000,
24
+ "_num_timesteps_at_start": 0,
25
+ "seed": null,
26
+ "action_noise": null,
27
+ "start_time": 1691843382810251376,
28
+ "learning_rate": 0.0007,
29
+ "tensorboard_log": null,
30
+ "_last_obs": {
31
+ ":type:": "<class 'collections.OrderedDict'>",
32
+ ":serialized:": "gAWViwIAAAAAAACMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwSbnVtcHkuY29yZS5udW1lcmljlIwLX2Zyb21idWZmZXKUk5QoljAAAAAAAAAAZk8ZwG+BZ79YmB4+48ACvzYr3T4YmR4+mh/mPhYU5r0rmB4+8zVlPnXfxb5HmB4+lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksESwOGlIwBQ5R0lFKUjAxkZXNpcmVkX2dvYWyUaAcoljAAAAAAAAAAsu23PzbaTL+dbYq/3GCTv7RIHr8NvsM/hyShP4PgxL+dbYq/M7cQvxPgwT+n1YI/lGgOSwRLA4aUaBJ0lFKUjAtvYnNlcnZhdGlvbpRoByiWMAEAAAAAAACOoK6/wft3P0Uvg78mrUe/PcXEP2DFkjua6Ey/Zk8ZwG+BZ79YmB4+AYEyPAsENr0pFKZA0NVWvQKo2L3tT5o9t/b3PD7DGb0jMrw8hiRQP5fdCz6iy4q+7o8Xv2mJyr/itZ2/eFYIv+PAAr82K90+GJkePmJpNDwtxTW9Q6MwwD/iVr00aNm9wZuaPXgpBT3Gvhq94ky9PLlKD7/FbtC90aj7Ps1g/r+feuS+2y/Xv07aTL+aH+Y+FhTmvSuYHj6X8jI8i4w1vTQlnTuPSFa9awvZvcGbmj18KQU9w74ave0zvzzgcWG+lq25PrCOW7/tDcS/H9tTvydMeD5ygkW/8zVlPnXfxb5HmB4+wWk0PJQ4Nr3UmRI7qeZXvWXT2b2sl5o9Tk0FPefTGr3Nrrk8lGgOSwRLE4aUaBJ0lFKUdS4=",
33
+ "achieved_goal": "[[-2.395471 -0.90431875 0.15487802]\n [-0.5107557 0.4319703 0.15488088]\n [ 0.44945985 -0.112343 0.15487735]\n [ 0.22383861 -0.38647047 0.15487777]]",
34
+ "desired_goal": "[[ 1.4369414 -0.80020463 -1.0814701 ]\n [-1.1513934 -0.61829686 1.5292374 ]\n [ 1.2589272 -1.5381016 -1.0814701 ]\n [-0.5652954 1.5146507 1.0221452 ]]",
35
+ "observation": "[[-1.36427474e+00 9.68685210e-01 -1.02488005e+00 -7.79985785e-01\n 1.53726923e+00 4.47909534e-03 -8.00424218e-01 -2.39547110e+00\n -9.04318750e-01 1.54878020e-01 1.08950147e-02 -4.44374494e-02\n 5.18996096e+00 -5.24500012e-02 -1.05789199e-01 7.53477588e-02\n 3.02690100e-02 -3.75397131e-02 2.29731258e-02]\n [ 8.13057303e-01 1.36587486e-01 -2.71084845e-01 -5.92039943e-01\n -1.58231843e+00 -1.23211312e+00 -5.32569408e-01 -5.10755718e-01\n 4.31970298e-01 1.54880881e-01 1.10114533e-02 -4.43774946e-02\n -2.75996470e+00 -5.24618588e-02 -1.06155783e-01 7.54923895e-02\n 3.25102508e-02 -3.77795920e-02 2.31079496e-02]\n [-5.59733927e-01 -1.01773776e-01 4.91522342e-01 -1.98732913e+00\n -4.46248025e-01 -1.68114793e+00 -8.00206065e-01 4.49459851e-01\n -1.12342998e-01 1.54877350e-01 1.09220957e-02 -4.43234853e-02\n 4.79569472e-03 -5.23152910e-02 -1.05978809e-01 7.54923895e-02\n 3.25102657e-02 -3.77795808e-02 2.33401898e-02]\n [-2.20160961e-01 3.62652481e-01 -8.57645988e-01 -1.53167498e+00\n -8.27562273e-01 2.42477998e-01 -7.71521688e-01 2.23838612e-01\n -3.86470467e-01 1.54877767e-01 1.10115418e-02 -4.44875509e-02\n 2.23695207e-03 -5.27102090e-02 -1.06360234e-01 7.54846036e-02\n 3.25444266e-02 -3.77997421e-02 2.26663593e-02]]"
36
+ },
37
+ "_last_episode_starts": {
38
+ ":type:": "<class 'numpy.ndarray'>",
39
+ ":serialized:": "gAWVdwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYEAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSwSFlIwBQ5R0lFKULg=="
40
+ },
41
+ "_last_original_obs": {
42
+ ":type:": "<class 'collections.OrderedDict'>",
43
+ ":serialized:": "gAWViwIAAAAAAACMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwSbnVtcHkuY29yZS5udW1lcmljlIwLX2Zyb21idWZmZXKUk5QoljAAAAAAAAAAjKwWvubRBD4K16M8SoXMPEkF+7wK16M8pIC3vSwYArwK16M8dsKLvCjJz7wK16M8lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksESwOGlIwBQ5R0lFKUjAxkZXNpcmVkX2dvYWyUaAcoljAAAAAAAAAAAluvvQ5Ywb3uMFg+0yJ0vf5wXT1d7QE+uOWNvWaUijzaEcc94JawPbaMdj3tcUw9lGgOSwRLA4aUaBJ0lFKUjAtvYnNlcnZhdGlvbpRoByiWMAEAAAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAAAAAAAAjKwWvubRBD4K16M8AAAAAAAAAIAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA6nIdPRlsGqxDI0o+AAAAAAAAAIAAAAAAAAAAAEqFzDxJBfu8CtejPAAAAAAAAACAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAOpyHT0ZbBqsQyNKPgAAAAAAAACAAAAAAAAAAACkgLe9LBgCvArXozwAAAAAAAAAgAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAAAAAAAAdsKLvCjJz7wK16M8AAAAAAAAAIAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAlGgOSwRLE4aUaBJ0lFKUdS4=",
44
+ "achieved_goal": "[[-0.14714259 0.12970695 0.02 ]\n [ 0.0249659 -0.03064217 0.02 ]\n [-0.08960083 -0.00794033 0.02 ]\n [-0.0170605 -0.02536447 0.02 ]]",
45
+ "desired_goal": "[[-0.0856228 -0.09440623 0.21112415]\n [-0.05960352 0.05406284 0.12688203]\n [-0.06928581 0.01691647 0.09720202]\n [ 0.08622527 0.06019279 0.04991334]]",
46
+ "observation": "[[ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00 0.0000000e+00 -1.4714259e-01\n 1.2970695e-01 2.0000000e-02 0.0000000e+00 -0.0000000e+00\n 0.0000000e+00 0.0000000e+00 0.0000000e+00 0.0000000e+00\n 0.0000000e+00 0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00 0.0000000e+00 2.4965901e-02\n -3.0642169e-02 2.0000000e-02 0.0000000e+00 -0.0000000e+00\n 0.0000000e+00 0.0000000e+00 0.0000000e+00 0.0000000e+00\n 0.0000000e+00 0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00 0.0000000e+00 -8.9600831e-02\n -7.9403333e-03 2.0000000e-02 0.0000000e+00 -0.0000000e+00\n 0.0000000e+00 0.0000000e+00 0.0000000e+00 0.0000000e+00\n 0.0000000e+00 0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00 0.0000000e+00 -1.7060500e-02\n -2.5364473e-02 2.0000000e-02 0.0000000e+00 -0.0000000e+00\n 0.0000000e+00 0.0000000e+00 0.0000000e+00 0.0000000e+00\n 0.0000000e+00 0.0000000e+00 0.0000000e+00]]"
47
+ },
48
+ "_episode_num": 0,
49
+ "use_sde": false,
50
+ "sde_sample_freq": -1,
51
+ "_current_progress_remaining": 0.0,
52
+ "_stats_window_size": 100,
53
+ "ep_info_buffer": {
54
+ ":type:": "<class 'collections.deque'>",
55
+ ":serialized:": "gAWV4AsAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHwEkAAAAAAACMAWyUSzKMAXSUR0Cn0cdBa9sadX2UKGgGR8BJAAAAAAAAaAdLMmgIR0Cn0mOG9HtndX2UKGgGR8BJAAAAAAAAaAdLMmgIR0Cn0s0kfLcLdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0Cn01y7f51vdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0Cn0sQSrYGudX2UKGgGR8BJAAAAAAAAaAdLMmgIR0Cn02hyjpLVdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0Cn08/0VafSdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0Cn1GPYWcjJdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0Cn08qPwNLEdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0Cn1GR3/xUedX2UKGgGR8BJAAAAAAAAaAdLMmgIR0Cn1Mz5oGpudX2UKGgGR8BJAAAAAAAAaAdLMmgIR0Cn1WF4keIVdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0Cn1Mn2IwdsdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0Cn1Xs90RvndX2UKGgGR8BJAAAAAAAAaAdLMmgIR0Cn1e+dsi0OdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0Cn1n4ffXPJdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0Cn1eoxYaHcdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0Cn1o25paicdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0Cn1wH+AEt/dX2UKGgGR8BJAAAAAAAAaAdLMmgIR0Cn15b6YVqOdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0Cn1v55zHS4dX2UKGgGR8BJAAAAAAAAaAdLMmgIR0Cn16VIAfdRdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0Cn2BBysCDFdX2UKGgGR8AxAAAAAAAAaAdLEmgIR0Cn2AU+LWI5dX2UKGgGR8BJAAAAAAAAaAdLMmgIR0Cn2KRU3n6mdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0Cn2A6rvLHNdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0Cn2R0rTYukdX2UKGgGRwAAAAAAAAAAaAdLAWgIR0Cn2SJPIn0DdX2UKGgGRwAAAAAAAAAAaAdLAWgIR0Cn2SlYuCf6dX2UKGgGR8BJAAAAAAAAaAdLMmgIR0Cn2RHmig01dX2UKGgGR8BJAAAAAAAAaAdLMmgIR0Cn2bCGFi8WdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0Cn2RzO5avBdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0Cn2juP/7zkdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0Cn2isUypJgdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0Cn2sqkVN5/dX2UKGgGR8BJAAAAAAAAaAdLMmgIR0Cn2jgAIY3vdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0Cn21AMMI/rdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0Cn2znyup0fdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0Cn29d+XqqwdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0Cn20ZSm65HdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0Cn3HmF8G9pdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0Cn3GZWilBQdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0Cn3QLNwBHTdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0Cn3Gm51/2CdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0Cn3YJ6Y3NtdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0Cn3WoS+QEIdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0Cn3gxsVLzxdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0Cn3XctGus+dX2UKGgGR8BJAAAAAAAAaAdLMmgIR0Cn3pGgzxgBdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0Cn3n3rMTvidX2UKGgGR8BJAAAAAAAAaAdLMmgIR0Cn3yERradudX2UKGgGR8BJAAAAAAAAaAdLMmgIR0Cn3oyMkyDadX2UKGgGR8BJAAAAAAAAaAdLMmgIR0Cn36evyLAIdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0Cn35T3yqdZdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0Cn4DIX0oSddX2UKGgGR8BJAAAAAAAAaAdLMmgIR0Cn35iXQdCFdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0Cn4Nx1oxpMdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0Cn4OcFQl8gdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0Cn4aTcAR02dX2UKGgGR8BJAAAAAAAAaAdLMmgIR0Cn4TU6xPfsdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0Cn4vEv9LpSdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0Cn4vJfx+a0dX2UKGgGR8BJAAAAAAAAaAdLMmgIR0Cn46tGViWndX2UKGgGR8BJAAAAAAAAaAdLMmgIR0Cn4y4jrzGxdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0Cn5LFTvRZ2dX2UKGgGR8BJAAAAAAAAaAdLMmgIR0Cn5LUrkKeDdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0Cn5Wx/3FkydX2UKGgGR8BJAAAAAAAAaAdLMmgIR0Cn5PFHSWqtdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0Cn5mjBdld1dX2UKGgGR8BJAAAAAAAAaAdLMmgIR0Cn5mSOinHedX2UKGgGR8BJAAAAAAAAaAdLMmgIR0Cn5xrmyPdVdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0Cn5olMqSX/dX2UKGgGR8BJAAAAAAAAaAdLMmgIR0Cn56lQVKwqdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0Cn55S8rZrYdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0Cn6DXKji4sdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0Cn56J7kXDWdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0Cn6Lr+PzWgdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0Cn6KEyckMTdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0Cn6TzEaVD8dX2UKGgGR8BJAAAAAAAAaAdLMmgIR0Cn6Kh1Tzd2dX2UKGgGR8BJAAAAAAAAaAdLMmgIR0Cn6cBomG/OdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0Cn6ajriVB2dX2UKGgGR8BJAAAAAAAAaAdLMmgIR0Cn6kdyLhrFdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0Cn6a/s/pt8dX2UKGgGR8BJAAAAAAAAaAdLMmgIR0Cn6sGWt2cKdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0Cn6qohIOH4dX2UKGgGR8BJAAAAAAAAaAdLMmgIR0Cn60YISlFddX2UKGgGR8BJAAAAAAAAaAdLMmgIR0Cn6q3974SIdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0Cn68RYq5LAdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0Cn6634TK1YdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0Cn7EqZlWfcdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0Cn67dBBzFNdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0Cn7MgHVwxWdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0Cn7LJiZv1ldX2UKGgGR8BJAAAAAAAAaAdLMmgIR0Cn7VMWfseGdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0Cn7Luc2BJ7dX2UKGgGR8BJAAAAAAAAaAdLMmgIR0Cn7c4YR/VidX2UKGgGR8BJAAAAAAAAaAdLMmgIR0Cn7brL6k6+dX2UKGgGR8BJAAAAAAAAaAdLMmgIR0Cn7mAD7qIKdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0Cn7cl+NLlFdWUu"
56
+ },
57
+ "ep_success_buffer": {
58
+ ":type:": "<class 'collections.deque'>",
59
+ ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="
60
+ },
61
+ "_n_updates": 50000,
62
+ "n_steps": 5,
63
+ "gamma": 0.99,
64
+ "gae_lambda": 1.0,
65
+ "ent_coef": 0.0,
66
+ "vf_coef": 0.5,
67
+ "max_grad_norm": 0.5,
68
+ "normalize_advantage": false,
69
+ "observation_space": {
70
+ ":type:": "<class 'gymnasium.spaces.dict.Dict'>",
71
+ ":serialized:": "gAWVMgQAAAAAAACMFWd5bW5hc2l1bS5zcGFjZXMuZGljdJSMBERpY3SUk5QpgZR9lCiMBnNwYWNlc5SMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwUZ3ltbmFzaXVtLnNwYWNlcy5ib3iUjANCb3iUk5QpgZR9lCiMBWR0eXBllIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowNYm91bmRlZF9iZWxvd5SMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYDAAAAAAAAAAEBAZRoE4wCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksDhZSMAUOUdJRSlIwNYm91bmRlZF9hYm92ZZRoHCiWAwAAAAAAAAABAQGUaCBLA4WUaCR0lFKUjAZfc2hhcGWUSwOFlIwDbG93lGgcKJYMAAAAAAAAAAAAIMEAACDBAAAgwZRoFksDhZRoJHSUUpSMBGhpZ2iUaBwolgwAAAAAAAAAAAAgQQAAIEEAACBBlGgWSwOFlGgkdJRSlIwIbG93X3JlcHKUjAUtMTAuMJSMCWhpZ2hfcmVwcpSMBDEwLjCUjApfbnBfcmFuZG9tlE51YowMZGVzaXJlZF9nb2FslGgNKYGUfZQoaBBoFmgZaBwolgMAAAAAAAAAAQEBlGggSwOFlGgkdJRSlGgnaBwolgMAAAAAAAAAAQEBlGggSwOFlGgkdJRSlGgsSwOFlGguaBwolgwAAAAAAAAAAAAgwQAAIMEAACDBlGgWSwOFlGgkdJRSlGgzaBwolgwAAAAAAAAAAAAgQQAAIEEAACBBlGgWSwOFlGgkdJRSlGg4jAUtMTAuMJRoOowEMTAuMJRoPE51YowLb2JzZXJ2YXRpb26UaA0pgZR9lChoEGgWaBloHCiWEwAAAAAAAAABAQEBAQEBAQEBAQEBAQEBAQEBlGggSxOFlGgkdJRSlGgnaBwolhMAAAAAAAAAAQEBAQEBAQEBAQEBAQEBAQEBAZRoIEsThZRoJHSUUpRoLEsThZRoLmgcKJZMAAAAAAAAAAAAIMEAACDBAAAgwQAAIMEAACDBAAAgwQAAIMEAACDBAAAgwQAAIMEAACDBAAAgwQAAIMEAACDBAAAgwQAAIMEAACDBAAAgwQAAIMGUaBZLE4WUaCR0lFKUaDNoHCiWTAAAAAAAAAAAACBBAAAgQQAAIEEAACBBAAAgQQAAIEEAACBBAAAgQQAAIEEAACBBAAAgQQAAIEEAACBBAAAgQQAAIEEAACBBAAAgQQAAIEEAACBBlGgWSxOFlGgkdJRSlGg4jAUtMTAuMJRoOowEMTAuMJRoPE51YnVoLE5oEE5oPE51Yi4=",
72
+ "spaces": "OrderedDict([('achieved_goal', Box(-10.0, 10.0, (3,), float32)), ('desired_goal', Box(-10.0, 10.0, (3,), float32)), ('observation', Box(-10.0, 10.0, (19,), float32))])",
73
+ "_shape": null,
74
+ "dtype": null,
75
+ "_np_random": null
76
+ },
77
+ "action_space": {
78
+ ":type:": "<class 'gymnasium.spaces.box.Box'>",
79
+ ":serialized:": "gAWVpwEAAAAAAACMFGd5bW5hc2l1bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lIwFZHR5cGWUk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMDWJvdW5kZWRfYmVsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWBAAAAAAAAAABAQEBlGgIjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSwSFlIwBQ5R0lFKUjA1ib3VuZGVkX2Fib3ZllGgRKJYEAAAAAAAAAAEBAQGUaBVLBIWUaBl0lFKUjAZfc2hhcGWUSwSFlIwDbG93lGgRKJYQAAAAAAAAAAAAgL8AAIC/AACAvwAAgL+UaAtLBIWUaBl0lFKUjARoaWdolGgRKJYQAAAAAAAAAAAAgD8AAIA/AACAPwAAgD+UaAtLBIWUaBl0lFKUjAhsb3dfcmVwcpSMBC0xLjCUjAloaWdoX3JlcHKUjAMxLjCUjApfbnBfcmFuZG9tlE51Yi4=",
80
+ "dtype": "float32",
81
+ "bounded_below": "[ True True True True]",
82
+ "bounded_above": "[ True True True True]",
83
+ "_shape": [
84
+ 4
85
+ ],
86
+ "low": "[-1. -1. -1. -1.]",
87
+ "high": "[1. 1. 1. 1.]",
88
+ "low_repr": "-1.0",
89
+ "high_repr": "1.0",
90
+ "_np_random": null
91
+ },
92
+ "n_envs": 4,
93
+ "lr_schedule": {
94
+ ":type:": "<class 'function'>",
95
+ ":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuDQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz9G8AaNuLrHhZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"
96
+ }
97
+ }
a2c-PandaPickAndPlace-v3/policy.optimizer.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:f36a4d00f64d86e15446c89c91d497d8fcba3a061563a01d9b965fca454563ca
3
+ size 51646
a2c-PandaPickAndPlace-v3/policy.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:747c5220dc14f809789c9e58b94587677a0b21763254bccabf027ff3413ca724
3
+ size 52926
a2c-PandaPickAndPlace-v3/pytorch_variables.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:d030ad8db708280fcae77d87e973102039acd23a11bdecc3db8eb6c0ac940ee1
3
+ size 431
a2c-PandaPickAndPlace-v3/system_info.txt ADDED
@@ -0,0 +1,9 @@
 
 
 
 
 
 
 
 
 
 
1
+ - OS: Linux-5.15.109+-x86_64-with-glibc2.35 # 1 SMP Fri Jun 9 10:57:30 UTC 2023
2
+ - Python: 3.10.12
3
+ - Stable-Baselines3: 2.0.0
4
+ - PyTorch: 2.0.1+cu118
5
+ - GPU Enabled: True
6
+ - Numpy: 1.23.5
7
+ - Cloudpickle: 2.2.1
8
+ - Gymnasium: 0.28.1
9
+ - OpenAI Gym: 0.25.2
config.json ADDED
@@ -0,0 +1 @@
 
 
1
+ {"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVRQAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMG011bHRpSW5wdXRBY3RvckNyaXRpY1BvbGljeZSTlC4=", "__module__": "stable_baselines3.common.policies", "__doc__": "\n MultiInputActorClass policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space (Tuple)\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Uses the CombinedExtractor\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function MultiInputActorCriticPolicy.__init__ at 0x7b1b680dc700>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc._abc_data object at 0x7b1b680caf80>"}, "verbose": 1, "policy_kwargs": {":type:": "<class 'dict'>", ":serialized:": "gAWVgQAAAAAAAAB9lCiMD29wdGltaXplcl9jbGFzc5SME3RvcmNoLm9wdGltLnJtc3Byb3CUjAdSTVNwcm9wlJOUjBBvcHRpbWl6ZXJfa3dhcmdzlH2UKIwFYWxwaGGURz/vrhR64UeujANlcHOURz7k+LWI42jxjAx3ZWlnaHRfZGVjYXmUSwB1dS4=", "optimizer_class": "<class 'torch.optim.rmsprop.RMSprop'>", "optimizer_kwargs": {"alpha": 0.99, "eps": 1e-05, "weight_decay": 0}}, "num_timesteps": 1000000, "_total_timesteps": 1000000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1691843382810251376, "learning_rate": 0.0007, "tensorboard_log": null, "_last_obs": {":type:": "<class 'collections.OrderedDict'>", ":serialized:": "gAWViwIAAAAAAACMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwSbnVtcHkuY29yZS5udW1lcmljlIwLX2Zyb21idWZmZXKUk5QoljAAAAAAAAAAZk8ZwG+BZ79YmB4+48ACvzYr3T4YmR4+mh/mPhYU5r0rmB4+8zVlPnXfxb5HmB4+lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksESwOGlIwBQ5R0lFKUjAxkZXNpcmVkX2dvYWyUaAcoljAAAAAAAAAAsu23PzbaTL+dbYq/3GCTv7RIHr8NvsM/hyShP4PgxL+dbYq/M7cQvxPgwT+n1YI/lGgOSwRLA4aUaBJ0lFKUjAtvYnNlcnZhdGlvbpRoByiWMAEAAAAAAACOoK6/wft3P0Uvg78mrUe/PcXEP2DFkjua6Ey/Zk8ZwG+BZ79YmB4+AYEyPAsENr0pFKZA0NVWvQKo2L3tT5o9t/b3PD7DGb0jMrw8hiRQP5fdCz6iy4q+7o8Xv2mJyr/itZ2/eFYIv+PAAr82K90+GJkePmJpNDwtxTW9Q6MwwD/iVr00aNm9wZuaPXgpBT3Gvhq94ky9PLlKD7/FbtC90aj7Ps1g/r+feuS+2y/Xv07aTL+aH+Y+FhTmvSuYHj6X8jI8i4w1vTQlnTuPSFa9awvZvcGbmj18KQU9w74ave0zvzzgcWG+lq25PrCOW7/tDcS/H9tTvydMeD5ygkW/8zVlPnXfxb5HmB4+wWk0PJQ4Nr3UmRI7qeZXvWXT2b2sl5o9Tk0FPefTGr3Nrrk8lGgOSwRLE4aUaBJ0lFKUdS4=", "achieved_goal": "[[-2.395471 -0.90431875 0.15487802]\n [-0.5107557 0.4319703 0.15488088]\n [ 0.44945985 -0.112343 0.15487735]\n [ 0.22383861 -0.38647047 0.15487777]]", "desired_goal": "[[ 1.4369414 -0.80020463 -1.0814701 ]\n [-1.1513934 -0.61829686 1.5292374 ]\n [ 1.2589272 -1.5381016 -1.0814701 ]\n [-0.5652954 1.5146507 1.0221452 ]]", "observation": "[[-1.36427474e+00 9.68685210e-01 -1.02488005e+00 -7.79985785e-01\n 1.53726923e+00 4.47909534e-03 -8.00424218e-01 -2.39547110e+00\n -9.04318750e-01 1.54878020e-01 1.08950147e-02 -4.44374494e-02\n 5.18996096e+00 -5.24500012e-02 -1.05789199e-01 7.53477588e-02\n 3.02690100e-02 -3.75397131e-02 2.29731258e-02]\n [ 8.13057303e-01 1.36587486e-01 -2.71084845e-01 -5.92039943e-01\n -1.58231843e+00 -1.23211312e+00 -5.32569408e-01 -5.10755718e-01\n 4.31970298e-01 1.54880881e-01 1.10114533e-02 -4.43774946e-02\n -2.75996470e+00 -5.24618588e-02 -1.06155783e-01 7.54923895e-02\n 3.25102508e-02 -3.77795920e-02 2.31079496e-02]\n [-5.59733927e-01 -1.01773776e-01 4.91522342e-01 -1.98732913e+00\n -4.46248025e-01 -1.68114793e+00 -8.00206065e-01 4.49459851e-01\n -1.12342998e-01 1.54877350e-01 1.09220957e-02 -4.43234853e-02\n 4.79569472e-03 -5.23152910e-02 -1.05978809e-01 7.54923895e-02\n 3.25102657e-02 -3.77795808e-02 2.33401898e-02]\n [-2.20160961e-01 3.62652481e-01 -8.57645988e-01 -1.53167498e+00\n -8.27562273e-01 2.42477998e-01 -7.71521688e-01 2.23838612e-01\n -3.86470467e-01 1.54877767e-01 1.10115418e-02 -4.44875509e-02\n 2.23695207e-03 -5.27102090e-02 -1.06360234e-01 7.54846036e-02\n 3.25444266e-02 -3.77997421e-02 2.26663593e-02]]"}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYEAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSwSFlIwBQ5R0lFKULg=="}, "_last_original_obs": {":type:": "<class 'collections.OrderedDict'>", ":serialized:": "gAWViwIAAAAAAACMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwSbnVtcHkuY29yZS5udW1lcmljlIwLX2Zyb21idWZmZXKUk5QoljAAAAAAAAAAjKwWvubRBD4K16M8SoXMPEkF+7wK16M8pIC3vSwYArwK16M8dsKLvCjJz7wK16M8lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksESwOGlIwBQ5R0lFKUjAxkZXNpcmVkX2dvYWyUaAcoljAAAAAAAAAAAluvvQ5Ywb3uMFg+0yJ0vf5wXT1d7QE+uOWNvWaUijzaEcc94JawPbaMdj3tcUw9lGgOSwRLA4aUaBJ0lFKUjAtvYnNlcnZhdGlvbpRoByiWMAEAAAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAAAAAAAAjKwWvubRBD4K16M8AAAAAAAAAIAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA6nIdPRlsGqxDI0o+AAAAAAAAAIAAAAAAAAAAAEqFzDxJBfu8CtejPAAAAAAAAACAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAOpyHT0ZbBqsQyNKPgAAAAAAAACAAAAAAAAAAACkgLe9LBgCvArXozwAAAAAAAAAgAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAAAAAAAAdsKLvCjJz7wK16M8AAAAAAAAAIAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAlGgOSwRLE4aUaBJ0lFKUdS4=", "achieved_goal": "[[-0.14714259 0.12970695 0.02 ]\n [ 0.0249659 -0.03064217 0.02 ]\n [-0.08960083 -0.00794033 0.02 ]\n [-0.0170605 -0.02536447 0.02 ]]", "desired_goal": "[[-0.0856228 -0.09440623 0.21112415]\n [-0.05960352 0.05406284 0.12688203]\n [-0.06928581 0.01691647 0.09720202]\n [ 0.08622527 0.06019279 0.04991334]]", "observation": "[[ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00 0.0000000e+00 -1.4714259e-01\n 1.2970695e-01 2.0000000e-02 0.0000000e+00 -0.0000000e+00\n 0.0000000e+00 0.0000000e+00 0.0000000e+00 0.0000000e+00\n 0.0000000e+00 0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00 0.0000000e+00 2.4965901e-02\n -3.0642169e-02 2.0000000e-02 0.0000000e+00 -0.0000000e+00\n 0.0000000e+00 0.0000000e+00 0.0000000e+00 0.0000000e+00\n 0.0000000e+00 0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00 0.0000000e+00 -8.9600831e-02\n -7.9403333e-03 2.0000000e-02 0.0000000e+00 -0.0000000e+00\n 0.0000000e+00 0.0000000e+00 0.0000000e+00 0.0000000e+00\n 0.0000000e+00 0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00 0.0000000e+00 -1.7060500e-02\n -2.5364473e-02 2.0000000e-02 0.0000000e+00 -0.0000000e+00\n 0.0000000e+00 0.0000000e+00 0.0000000e+00 0.0000000e+00\n 0.0000000e+00 0.0000000e+00 0.0000000e+00]]"}, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": 0.0, "_stats_window_size": 100, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWV4AsAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHwEkAAAAAAACMAWyUSzKMAXSUR0Cn0cdBa9sadX2UKGgGR8BJAAAAAAAAaAdLMmgIR0Cn0mOG9HtndX2UKGgGR8BJAAAAAAAAaAdLMmgIR0Cn0s0kfLcLdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0Cn01y7f51vdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0Cn0sQSrYGudX2UKGgGR8BJAAAAAAAAaAdLMmgIR0Cn02hyjpLVdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0Cn08/0VafSdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0Cn1GPYWcjJdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0Cn08qPwNLEdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0Cn1GR3/xUedX2UKGgGR8BJAAAAAAAAaAdLMmgIR0Cn1Mz5oGpudX2UKGgGR8BJAAAAAAAAaAdLMmgIR0Cn1WF4keIVdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0Cn1Mn2IwdsdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0Cn1Xs90RvndX2UKGgGR8BJAAAAAAAAaAdLMmgIR0Cn1e+dsi0OdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0Cn1n4ffXPJdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0Cn1eoxYaHcdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0Cn1o25paicdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0Cn1wH+AEt/dX2UKGgGR8BJAAAAAAAAaAdLMmgIR0Cn15b6YVqOdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0Cn1v55zHS4dX2UKGgGR8BJAAAAAAAAaAdLMmgIR0Cn16VIAfdRdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0Cn2BBysCDFdX2UKGgGR8AxAAAAAAAAaAdLEmgIR0Cn2AU+LWI5dX2UKGgGR8BJAAAAAAAAaAdLMmgIR0Cn2KRU3n6mdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0Cn2A6rvLHNdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0Cn2R0rTYukdX2UKGgGRwAAAAAAAAAAaAdLAWgIR0Cn2SJPIn0DdX2UKGgGRwAAAAAAAAAAaAdLAWgIR0Cn2SlYuCf6dX2UKGgGR8BJAAAAAAAAaAdLMmgIR0Cn2RHmig01dX2UKGgGR8BJAAAAAAAAaAdLMmgIR0Cn2bCGFi8WdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0Cn2RzO5avBdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0Cn2juP/7zkdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0Cn2isUypJgdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0Cn2sqkVN5/dX2UKGgGR8BJAAAAAAAAaAdLMmgIR0Cn2jgAIY3vdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0Cn21AMMI/rdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0Cn2znyup0fdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0Cn29d+XqqwdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0Cn20ZSm65HdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0Cn3HmF8G9pdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0Cn3GZWilBQdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0Cn3QLNwBHTdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0Cn3Gm51/2CdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0Cn3YJ6Y3NtdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0Cn3WoS+QEIdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0Cn3gxsVLzxdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0Cn3XctGus+dX2UKGgGR8BJAAAAAAAAaAdLMmgIR0Cn3pGgzxgBdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0Cn3n3rMTvidX2UKGgGR8BJAAAAAAAAaAdLMmgIR0Cn3yERradudX2UKGgGR8BJAAAAAAAAaAdLMmgIR0Cn3oyMkyDadX2UKGgGR8BJAAAAAAAAaAdLMmgIR0Cn36evyLAIdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0Cn35T3yqdZdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0Cn4DIX0oSddX2UKGgGR8BJAAAAAAAAaAdLMmgIR0Cn35iXQdCFdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0Cn4Nx1oxpMdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0Cn4OcFQl8gdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0Cn4aTcAR02dX2UKGgGR8BJAAAAAAAAaAdLMmgIR0Cn4TU6xPfsdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0Cn4vEv9LpSdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0Cn4vJfx+a0dX2UKGgGR8BJAAAAAAAAaAdLMmgIR0Cn46tGViWndX2UKGgGR8BJAAAAAAAAaAdLMmgIR0Cn4y4jrzGxdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0Cn5LFTvRZ2dX2UKGgGR8BJAAAAAAAAaAdLMmgIR0Cn5LUrkKeDdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0Cn5Wx/3FkydX2UKGgGR8BJAAAAAAAAaAdLMmgIR0Cn5PFHSWqtdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0Cn5mjBdld1dX2UKGgGR8BJAAAAAAAAaAdLMmgIR0Cn5mSOinHedX2UKGgGR8BJAAAAAAAAaAdLMmgIR0Cn5xrmyPdVdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0Cn5olMqSX/dX2UKGgGR8BJAAAAAAAAaAdLMmgIR0Cn56lQVKwqdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0Cn55S8rZrYdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0Cn6DXKji4sdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0Cn56J7kXDWdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0Cn6Lr+PzWgdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0Cn6KEyckMTdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0Cn6TzEaVD8dX2UKGgGR8BJAAAAAAAAaAdLMmgIR0Cn6Kh1Tzd2dX2UKGgGR8BJAAAAAAAAaAdLMmgIR0Cn6cBomG/OdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0Cn6ajriVB2dX2UKGgGR8BJAAAAAAAAaAdLMmgIR0Cn6kdyLhrFdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0Cn6a/s/pt8dX2UKGgGR8BJAAAAAAAAaAdLMmgIR0Cn6sGWt2cKdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0Cn6qohIOH4dX2UKGgGR8BJAAAAAAAAaAdLMmgIR0Cn60YISlFddX2UKGgGR8BJAAAAAAAAaAdLMmgIR0Cn6q3974SIdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0Cn68RYq5LAdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0Cn6634TK1YdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0Cn7EqZlWfcdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0Cn67dBBzFNdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0Cn7MgHVwxWdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0Cn7LJiZv1ldX2UKGgGR8BJAAAAAAAAaAdLMmgIR0Cn7VMWfseGdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0Cn7Luc2BJ7dX2UKGgGR8BJAAAAAAAAaAdLMmgIR0Cn7c4YR/VidX2UKGgGR8BJAAAAAAAAaAdLMmgIR0Cn7brL6k6+dX2UKGgGR8BJAAAAAAAAaAdLMmgIR0Cn7mAD7qIKdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0Cn7cl+NLlFdWUu"}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 50000, "n_steps": 5, "gamma": 0.99, "gae_lambda": 1.0, "ent_coef": 0.0, "vf_coef": 0.5, "max_grad_norm": 0.5, "normalize_advantage": false, "observation_space": {":type:": "<class 'gymnasium.spaces.dict.Dict'>", ":serialized:": "gAWVMgQAAAAAAACMFWd5bW5hc2l1bS5zcGFjZXMuZGljdJSMBERpY3SUk5QpgZR9lCiMBnNwYWNlc5SMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwUZ3ltbmFzaXVtLnNwYWNlcy5ib3iUjANCb3iUk5QpgZR9lCiMBWR0eXBllIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowNYm91bmRlZF9iZWxvd5SMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYDAAAAAAAAAAEBAZRoE4wCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksDhZSMAUOUdJRSlIwNYm91bmRlZF9hYm92ZZRoHCiWAwAAAAAAAAABAQGUaCBLA4WUaCR0lFKUjAZfc2hhcGWUSwOFlIwDbG93lGgcKJYMAAAAAAAAAAAAIMEAACDBAAAgwZRoFksDhZRoJHSUUpSMBGhpZ2iUaBwolgwAAAAAAAAAAAAgQQAAIEEAACBBlGgWSwOFlGgkdJRSlIwIbG93X3JlcHKUjAUtMTAuMJSMCWhpZ2hfcmVwcpSMBDEwLjCUjApfbnBfcmFuZG9tlE51YowMZGVzaXJlZF9nb2FslGgNKYGUfZQoaBBoFmgZaBwolgMAAAAAAAAAAQEBlGggSwOFlGgkdJRSlGgnaBwolgMAAAAAAAAAAQEBlGggSwOFlGgkdJRSlGgsSwOFlGguaBwolgwAAAAAAAAAAAAgwQAAIMEAACDBlGgWSwOFlGgkdJRSlGgzaBwolgwAAAAAAAAAAAAgQQAAIEEAACBBlGgWSwOFlGgkdJRSlGg4jAUtMTAuMJRoOowEMTAuMJRoPE51YowLb2JzZXJ2YXRpb26UaA0pgZR9lChoEGgWaBloHCiWEwAAAAAAAAABAQEBAQEBAQEBAQEBAQEBAQEBlGggSxOFlGgkdJRSlGgnaBwolhMAAAAAAAAAAQEBAQEBAQEBAQEBAQEBAQEBAZRoIEsThZRoJHSUUpRoLEsThZRoLmgcKJZMAAAAAAAAAAAAIMEAACDBAAAgwQAAIMEAACDBAAAgwQAAIMEAACDBAAAgwQAAIMEAACDBAAAgwQAAIMEAACDBAAAgwQAAIMEAACDBAAAgwQAAIMGUaBZLE4WUaCR0lFKUaDNoHCiWTAAAAAAAAAAAACBBAAAgQQAAIEEAACBBAAAgQQAAIEEAACBBAAAgQQAAIEEAACBBAAAgQQAAIEEAACBBAAAgQQAAIEEAACBBAAAgQQAAIEEAACBBlGgWSxOFlGgkdJRSlGg4jAUtMTAuMJRoOowEMTAuMJRoPE51YnVoLE5oEE5oPE51Yi4=", "spaces": "OrderedDict([('achieved_goal', Box(-10.0, 10.0, (3,), float32)), ('desired_goal', Box(-10.0, 10.0, (3,), float32)), ('observation', Box(-10.0, 10.0, (19,), float32))])", "_shape": null, "dtype": null, "_np_random": null}, "action_space": {":type:": "<class 'gymnasium.spaces.box.Box'>", ":serialized:": "gAWVpwEAAAAAAACMFGd5bW5hc2l1bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lIwFZHR5cGWUk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMDWJvdW5kZWRfYmVsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWBAAAAAAAAAABAQEBlGgIjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSwSFlIwBQ5R0lFKUjA1ib3VuZGVkX2Fib3ZllGgRKJYEAAAAAAAAAAEBAQGUaBVLBIWUaBl0lFKUjAZfc2hhcGWUSwSFlIwDbG93lGgRKJYQAAAAAAAAAAAAgL8AAIC/AACAvwAAgL+UaAtLBIWUaBl0lFKUjARoaWdolGgRKJYQAAAAAAAAAAAAgD8AAIA/AACAPwAAgD+UaAtLBIWUaBl0lFKUjAhsb3dfcmVwcpSMBC0xLjCUjAloaWdoX3JlcHKUjAMxLjCUjApfbnBfcmFuZG9tlE51Yi4=", "dtype": "float32", "bounded_below": "[ True True True True]", "bounded_above": "[ True True True True]", "_shape": [4], "low": "[-1. -1. -1. -1.]", "high": "[1. 1. 1. 1.]", "low_repr": "-1.0", "high_repr": "1.0", "_np_random": null}, "n_envs": 4, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuDQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz9G8AaNuLrHhZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "system_info": {"OS": "Linux-5.15.109+-x86_64-with-glibc2.35 # 1 SMP Fri Jun 9 10:57:30 UTC 2023", "Python": "3.10.12", "Stable-Baselines3": "2.0.0", "PyTorch": "2.0.1+cu118", "GPU Enabled": "True", "Numpy": "1.23.5", "Cloudpickle": "2.2.1", "Gymnasium": "0.28.1", "OpenAI Gym": "0.25.2"}}
replay.mp4 ADDED
Binary file (982 kB). View file
 
results.json ADDED
@@ -0,0 +1 @@
 
 
1
+ {"mean_reward": -50.0, "std_reward": 0.0, "is_deterministic": true, "n_eval_episodes": 10, "eval_datetime": "2023-08-12T13:21:01.927991"}
vec_normalize.pkl ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:ab6fde00ea4dd4e177c6925f70abdbc418b385cfdf330374dfecc630a47505fa
3
+ size 3013