--- language: - en license: apache-2.0 tags: - generated_from_trainer datasets: - glue metrics: - accuracy model-index: - name: jpqd-bert-base-ft-sst2 results: - task: name: Text Classification type: text-classification dataset: name: GLUE SST2 type: glue args: sst2 metrics: - name: Accuracy type: accuracy value: 0.9254587155963303 --- # jpqd-bert-base-ft-sst2 > **Note** > This model was trained for only 1 epoch and is shared for testing purposes This model is a fine-tuned version of [bert-base-uncased](https://huggingface.co/bert-base-uncased) on the GLUE SST2 dataset. It achieves the following results on the evaluation set: - Loss: 0.2181 - Accuracy: 0.9255 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 32 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 1.0 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:| | 0.4129 | 0.12 | 250 | 0.4416 | 0.8761 | | 0.412 | 0.24 | 500 | 0.4969 | 0.8899 | | 0.3191 | 0.36 | 750 | 0.2717 | 0.9163 | | 0.2688 | 0.48 | 1000 | 0.2432 | 0.9117 | | 0.3306 | 0.59 | 1250 | 0.2033 | 0.9243 | | 0.224 | 0.71 | 1500 | 0.2383 | 0.9243 | | 0.2082 | 0.83 | 1750 | 0.2233 | 0.9255 | | 0.2161 | 0.95 | 2000 | 0.2207 | 0.9255 | ### Framework versions - Transformers 4.25.1 - Pytorch 1.13.1+cu117 - Datasets 2.8.0 - Tokenizers 0.13.2