--- license: apache-2.0 base_model: google/vit-base-patch16-224-in21k tags: - generated_from_trainer datasets: - image_folder metrics: - accuracy model-index: - name: vit-base-patch16-224-in21k-finetune results: - task: name: Image Classification type: image-classification dataset: name: image_folder type: image_folder config: default split: train args: default metrics: - name: Accuracy type: accuracy value: 0.22988505747126436 --- # vit-base-patch16-224-in21k-finetune This model is a fine-tuned version of [google/vit-base-patch16-224-in21k](https://huggingface.co/google/vit-base-patch16-224-in21k) on the image_folder dataset. It achieves the following results on the evaluation set: - Loss: 1.6043 - Accuracy: 0.2299 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 64 - eval_batch_size: 64 - seed: 42 - gradient_accumulation_steps: 4 - total_train_batch_size: 256 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_ratio: 0.1 - num_epochs: 5 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:| | No log | 0.92 | 3 | 1.6377 | 0.0920 | | No log | 1.85 | 6 | 1.6208 | 0.1954 | | No log | 2.77 | 9 | 1.6120 | 0.2184 | | 1.5539 | 4.0 | 13 | 1.6054 | 0.2299 | | 1.5539 | 4.62 | 15 | 1.6043 | 0.2299 | ### Framework versions - Transformers 4.38.1 - Pytorch 2.1.2 - Datasets 2.1.0 - Tokenizers 0.15.2