Upload inference.py
Browse files- inference.py +445 -0
inference.py
ADDED
@@ -0,0 +1,445 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import random
|
2 |
+
import time
|
3 |
+
from pathlib import Path
|
4 |
+
|
5 |
+
import numpy as np
|
6 |
+
import torch
|
7 |
+
|
8 |
+
# For reproducibility
|
9 |
+
# torch.backends.cudnn.benchmark = False
|
10 |
+
# torch.backends.cudnn.deterministic = True
|
11 |
+
|
12 |
+
from diffusers import schedulers
|
13 |
+
from diffusers.models import AutoencoderKL
|
14 |
+
from loguru import logger
|
15 |
+
from transformers import BertModel, BertTokenizer
|
16 |
+
from transformers.modeling_utils import logger as tf_logger
|
17 |
+
|
18 |
+
from .constants import SAMPLER_FACTORY, NEGATIVE_PROMPT, TRT_MAX_WIDTH, TRT_MAX_HEIGHT, TRT_MAX_BATCH_SIZE
|
19 |
+
from .diffusion.pipeline import StableDiffusionPipeline
|
20 |
+
from .modules.models import HunYuanDiT, HUNYUAN_DIT_CONFIG
|
21 |
+
from .modules.posemb_layers import get_2d_rotary_pos_embed, get_fill_resize_and_crop
|
22 |
+
from .modules.text_encoder import MT5Embedder
|
23 |
+
from .utils.tools import set_seeds
|
24 |
+
from peft import LoraConfig
|
25 |
+
|
26 |
+
|
27 |
+
class Resolution:
|
28 |
+
def __init__(self, width, height):
|
29 |
+
self.width = width
|
30 |
+
self.height = height
|
31 |
+
|
32 |
+
def __str__(self):
|
33 |
+
return f'{self.height}x{self.width}'
|
34 |
+
|
35 |
+
|
36 |
+
class ResolutionGroup:
|
37 |
+
def __init__(self):
|
38 |
+
self.data = [
|
39 |
+
Resolution(1024, 1024), # 1:1
|
40 |
+
Resolution(1280, 1280), # 1:1
|
41 |
+
Resolution(1024, 768), # 4:3
|
42 |
+
Resolution(1152, 864), # 4:3
|
43 |
+
Resolution(1280, 960), # 4:3
|
44 |
+
Resolution(768, 1024), # 3:4
|
45 |
+
Resolution(864, 1152), # 3:4
|
46 |
+
Resolution(960, 1280), # 3:4
|
47 |
+
Resolution(1280, 768), # 16:9
|
48 |
+
Resolution(768, 1280), # 9:16
|
49 |
+
]
|
50 |
+
self.supported_sizes = set([(r.width, r.height) for r in self.data])
|
51 |
+
|
52 |
+
def is_valid(self, width, height):
|
53 |
+
return (width, height) in self.supported_sizes
|
54 |
+
|
55 |
+
|
56 |
+
STANDARD_RATIO = np.array([
|
57 |
+
1.0, # 1:1
|
58 |
+
4.0 / 3.0, # 4:3
|
59 |
+
3.0 / 4.0, # 3:4
|
60 |
+
16.0 / 9.0, # 16:9
|
61 |
+
9.0 / 16.0, # 9:16
|
62 |
+
])
|
63 |
+
STANDARD_SHAPE = [
|
64 |
+
[(1024, 1024), (1280, 1280)], # 1:1
|
65 |
+
[(1280, 960)], # 4:3
|
66 |
+
[(960, 1280)], # 3:4
|
67 |
+
[(1280, 768)], # 16:9
|
68 |
+
[(768, 1280)], # 9:16
|
69 |
+
]
|
70 |
+
STANDARD_AREA = [
|
71 |
+
np.array([w * h for w, h in shapes])
|
72 |
+
for shapes in STANDARD_SHAPE
|
73 |
+
]
|
74 |
+
|
75 |
+
|
76 |
+
def get_standard_shape(target_width, target_height):
|
77 |
+
"""
|
78 |
+
Map image size to standard size.
|
79 |
+
"""
|
80 |
+
target_ratio = target_width / target_height
|
81 |
+
closest_ratio_idx = np.argmin(np.abs(STANDARD_RATIO - target_ratio))
|
82 |
+
closest_area_idx = np.argmin(np.abs(STANDARD_AREA[closest_ratio_idx] - target_width * target_height))
|
83 |
+
width, height = STANDARD_SHAPE[closest_ratio_idx][closest_area_idx]
|
84 |
+
return width, height
|
85 |
+
|
86 |
+
|
87 |
+
def _to_tuple(val):
|
88 |
+
if isinstance(val, (list, tuple)):
|
89 |
+
if len(val) == 1:
|
90 |
+
val = [val[0], val[0]]
|
91 |
+
elif len(val) == 2:
|
92 |
+
val = tuple(val)
|
93 |
+
else:
|
94 |
+
raise ValueError(f"Invalid value: {val}")
|
95 |
+
elif isinstance(val, (int, float)):
|
96 |
+
val = (val, val)
|
97 |
+
else:
|
98 |
+
raise ValueError(f"Invalid value: {val}")
|
99 |
+
return val
|
100 |
+
|
101 |
+
|
102 |
+
def get_pipeline(args, vae, text_encoder, tokenizer, model, device, rank,
|
103 |
+
embedder_t5, infer_mode, sampler=None):
|
104 |
+
"""
|
105 |
+
Get scheduler and pipeline for sampling. The sampler and pipeline are both
|
106 |
+
based on diffusers and make some modifications.
|
107 |
+
|
108 |
+
Returns
|
109 |
+
-------
|
110 |
+
pipeline: StableDiffusionPipeline
|
111 |
+
sampler_name: str
|
112 |
+
"""
|
113 |
+
sampler = sampler or args.sampler
|
114 |
+
|
115 |
+
# Load sampler from factory
|
116 |
+
kwargs = SAMPLER_FACTORY[sampler]['kwargs']
|
117 |
+
scheduler = SAMPLER_FACTORY[sampler]['scheduler']
|
118 |
+
|
119 |
+
# Update sampler according to the arguments
|
120 |
+
kwargs['beta_schedule'] = args.noise_schedule
|
121 |
+
kwargs['beta_start'] = args.beta_start
|
122 |
+
kwargs['beta_end'] = args.beta_end
|
123 |
+
kwargs['prediction_type'] = args.predict_type
|
124 |
+
|
125 |
+
# Build scheduler according to the sampler.
|
126 |
+
scheduler_class = getattr(schedulers, scheduler)
|
127 |
+
scheduler = scheduler_class(**kwargs)
|
128 |
+
|
129 |
+
# Set timesteps for inference steps.
|
130 |
+
scheduler.set_timesteps(args.infer_steps, device)
|
131 |
+
|
132 |
+
# Only enable progress bar for rank 0
|
133 |
+
progress_bar_config = {} if rank == 0 else {'disable': True}
|
134 |
+
|
135 |
+
pipeline = StableDiffusionPipeline(vae=vae,
|
136 |
+
text_encoder=text_encoder,
|
137 |
+
tokenizer=tokenizer,
|
138 |
+
unet=model,
|
139 |
+
scheduler=scheduler,
|
140 |
+
feature_extractor=None,
|
141 |
+
safety_checker=None,
|
142 |
+
requires_safety_checker=False,
|
143 |
+
progress_bar_config=progress_bar_config,
|
144 |
+
embedder_t5=embedder_t5,
|
145 |
+
infer_mode=infer_mode,
|
146 |
+
)
|
147 |
+
|
148 |
+
pipeline = pipeline.to(device)
|
149 |
+
|
150 |
+
return pipeline, sampler
|
151 |
+
|
152 |
+
|
153 |
+
class End2End(object):
|
154 |
+
def __init__(self, args, models_root_path):
|
155 |
+
self.args = args
|
156 |
+
|
157 |
+
# Check arguments
|
158 |
+
t2i_root_path = Path(models_root_path) / "t2i"
|
159 |
+
self.root = t2i_root_path
|
160 |
+
logger.info(f"Got text-to-image model root path: {t2i_root_path}")
|
161 |
+
|
162 |
+
# Set device and disable gradient
|
163 |
+
self.device = "cuda" if torch.cuda.is_available() else "cpu"
|
164 |
+
torch.set_grad_enabled(False)
|
165 |
+
# Disable BertModel logging checkpoint info
|
166 |
+
tf_logger.setLevel('ERROR')
|
167 |
+
|
168 |
+
# ========================================================================
|
169 |
+
logger.info(f"Loading CLIP Text Encoder...")
|
170 |
+
text_encoder_path = self.root / "clip_text_encoder"
|
171 |
+
self.clip_text_encoder = BertModel.from_pretrained(str(text_encoder_path), False, revision=None).to(self.device)
|
172 |
+
logger.info(f"Loading CLIP Text Encoder finished")
|
173 |
+
|
174 |
+
# ========================================================================
|
175 |
+
logger.info(f"Loading CLIP Tokenizer...")
|
176 |
+
tokenizer_path = self.root / "tokenizer"
|
177 |
+
self.tokenizer = BertTokenizer.from_pretrained(str(tokenizer_path))
|
178 |
+
logger.info(f"Loading CLIP Tokenizer finished")
|
179 |
+
|
180 |
+
# ========================================================================
|
181 |
+
logger.info(f"Loading T5 Text Encoder and T5 Tokenizer...")
|
182 |
+
t5_text_encoder_path = self.root / 'mt5'
|
183 |
+
embedder_t5 = MT5Embedder(t5_text_encoder_path, torch_dtype=torch.float16, max_length=256)
|
184 |
+
self.embedder_t5 = embedder_t5
|
185 |
+
logger.info(f"Loading t5_text_encoder and t5_tokenizer finished")
|
186 |
+
|
187 |
+
# ========================================================================
|
188 |
+
logger.info(f"Loading VAE...")
|
189 |
+
vae_path = self.root / "sdxl-vae-fp16-fix"
|
190 |
+
self.vae = AutoencoderKL.from_pretrained(str(vae_path)).to(self.device)
|
191 |
+
logger.info(f"Loading VAE finished")
|
192 |
+
|
193 |
+
# ========================================================================
|
194 |
+
# Create model structure and load the checkpoint
|
195 |
+
logger.info(f"Building HunYuan-DiT model...")
|
196 |
+
model_config = HUNYUAN_DIT_CONFIG[self.args.model]
|
197 |
+
self.patch_size = model_config['patch_size']
|
198 |
+
self.head_size = model_config['hidden_size'] // model_config['num_heads']
|
199 |
+
self.resolutions, self.freqs_cis_img = self.standard_shapes() # Used for TensorRT models
|
200 |
+
self.image_size = _to_tuple(self.args.image_size)
|
201 |
+
latent_size = (self.image_size[0] // 8, self.image_size[1] // 8)
|
202 |
+
|
203 |
+
self.infer_mode = self.args.infer_mode
|
204 |
+
if self.infer_mode in ['fa', 'torch']:
|
205 |
+
|
206 |
+
# # for trained pt
|
207 |
+
# model_path = Path("/home1/qbs/my_program1/HunyuanDiT/log_EXP/024-dit_g2_full_1024p/checkpoints/0100000.pt/mp_rank_00_model_states.pt")
|
208 |
+
# if not model_path.exists():
|
209 |
+
# raise ValueError(f"model_path not exists: {model_path}")
|
210 |
+
# # Build model structure
|
211 |
+
# self.model = HunYuanDiT(self.args,
|
212 |
+
# input_size=latent_size,
|
213 |
+
# **model_config,
|
214 |
+
# log_fn=logger.info,
|
215 |
+
# ).half().to(self.device) # Force to use fp16
|
216 |
+
# # Load model checkpoint
|
217 |
+
# logger.info(f"Loading torch model {model_path}...")
|
218 |
+
# state_dict = torch.load(model_path, map_location=lambda storage, loc: storage)
|
219 |
+
# self.model.load_state_dict(state_dict["module"])
|
220 |
+
|
221 |
+
# for ema trained pt
|
222 |
+
model_path = Path("/home1/qbs/my_program1/HunyuanDiT/log_EXP/027-dit_g2_full_1024p/checkpoints/latest.pt/mp_rank_00_model_states.pt")
|
223 |
+
if not model_path.exists():
|
224 |
+
raise ValueError(f"model_path not exists: {model_path}")
|
225 |
+
# Build model structure
|
226 |
+
self.model = HunYuanDiT(self.args,
|
227 |
+
input_size=latent_size,
|
228 |
+
**model_config,
|
229 |
+
log_fn=logger.info,
|
230 |
+
).half().to(self.device) # Force to use fp16
|
231 |
+
# Load model checkpoint
|
232 |
+
logger.info(f"Loading torch model {model_path}...")
|
233 |
+
state_dict = torch.load(model_path, map_location=lambda storage, loc: storage)
|
234 |
+
self.model.load_state_dict(state_dict["ema"])
|
235 |
+
|
236 |
+
# #original
|
237 |
+
# model_dir = self.root / "model"
|
238 |
+
# model_path = model_dir / f"pytorch_model_{self.args.load_key}.pt"
|
239 |
+
# if not model_path.exists():
|
240 |
+
# raise ValueError(f"model_path not exists: {model_path}")
|
241 |
+
# # Build model structure
|
242 |
+
# self.model = HunYuanDiT(self.args,
|
243 |
+
# input_size=latent_size,
|
244 |
+
# **model_config,
|
245 |
+
# log_fn=logger.info,
|
246 |
+
# ).half().to(self.device) # Force to use fp16
|
247 |
+
# # Load model checkpoint
|
248 |
+
# logger.info(f"Loading torch model {model_path}...")
|
249 |
+
# state_dict = torch.load(model_path, map_location=lambda storage, loc: storage)
|
250 |
+
# self.model.load_state_dict(state_dict)
|
251 |
+
|
252 |
+
lora_ckpt = args.lora_ckpt
|
253 |
+
if lora_ckpt is not None and lora_ckpt != "":
|
254 |
+
logger.info(f"Loading Lora checkpoint {lora_ckpt}...")
|
255 |
+
|
256 |
+
self.model.load_adapter(lora_ckpt)
|
257 |
+
self.model.merge_and_unload()
|
258 |
+
|
259 |
+
|
260 |
+
self.model.eval()
|
261 |
+
logger.info(f"Loading torch model finished")
|
262 |
+
elif self.infer_mode == 'trt':
|
263 |
+
from .modules.trt.hcf_model import TRTModel
|
264 |
+
|
265 |
+
trt_dir = self.root / "model_trt"
|
266 |
+
engine_dir = trt_dir / "engine"
|
267 |
+
plugin_path = trt_dir / "fmha_plugins/9.2_plugin_cuda11/fMHAPlugin.so"
|
268 |
+
model_name = "model_onnx"
|
269 |
+
|
270 |
+
logger.info(f"Loading TensorRT model {engine_dir}/{model_name}...")
|
271 |
+
self.model = TRTModel(model_name=model_name,
|
272 |
+
engine_dir=str(engine_dir),
|
273 |
+
image_height=TRT_MAX_HEIGHT,
|
274 |
+
image_width=TRT_MAX_WIDTH,
|
275 |
+
text_maxlen=args.text_len,
|
276 |
+
embedding_dim=args.text_states_dim,
|
277 |
+
plugin_path=str(plugin_path),
|
278 |
+
max_batch_size=TRT_MAX_BATCH_SIZE,
|
279 |
+
)
|
280 |
+
logger.info(f"Loading TensorRT model finished")
|
281 |
+
else:
|
282 |
+
raise ValueError(f"Unknown infer_mode: {self.infer_mode}")
|
283 |
+
|
284 |
+
# ========================================================================
|
285 |
+
# Build inference pipeline. We use a customized StableDiffusionPipeline.
|
286 |
+
logger.info(f"Loading inference pipeline...")
|
287 |
+
self.pipeline, self.sampler = self.load_sampler()
|
288 |
+
logger.info(f'Loading pipeline finished')
|
289 |
+
|
290 |
+
# ========================================================================
|
291 |
+
self.default_negative_prompt = NEGATIVE_PROMPT
|
292 |
+
logger.info("==================================================")
|
293 |
+
logger.info(f" Model is ready. ")
|
294 |
+
logger.info("==================================================")
|
295 |
+
|
296 |
+
def load_sampler(self, sampler=None):
|
297 |
+
pipeline, sampler = get_pipeline(self.args,
|
298 |
+
self.vae,
|
299 |
+
self.clip_text_encoder,
|
300 |
+
self.tokenizer,
|
301 |
+
self.model,
|
302 |
+
device=self.device,
|
303 |
+
rank=0,
|
304 |
+
embedder_t5=self.embedder_t5,
|
305 |
+
infer_mode=self.infer_mode,
|
306 |
+
sampler=sampler,
|
307 |
+
)
|
308 |
+
return pipeline, sampler
|
309 |
+
|
310 |
+
def calc_rope(self, height, width):
|
311 |
+
th = height // 8 // self.patch_size
|
312 |
+
tw = width // 8 // self.patch_size
|
313 |
+
base_size = 512 // 8 // self.patch_size
|
314 |
+
start, stop = get_fill_resize_and_crop((th, tw), base_size)
|
315 |
+
sub_args = [start, stop, (th, tw)]
|
316 |
+
rope = get_2d_rotary_pos_embed(self.head_size, *sub_args)
|
317 |
+
return rope
|
318 |
+
|
319 |
+
def standard_shapes(self):
|
320 |
+
resolutions = ResolutionGroup()
|
321 |
+
freqs_cis_img = {}
|
322 |
+
for reso in resolutions.data:
|
323 |
+
freqs_cis_img[str(reso)] = self.calc_rope(reso.height, reso.width)
|
324 |
+
return resolutions, freqs_cis_img
|
325 |
+
|
326 |
+
def predict(self,
|
327 |
+
user_prompt,
|
328 |
+
height=1024,
|
329 |
+
width=1024,
|
330 |
+
seed=None,
|
331 |
+
enhanced_prompt=None,
|
332 |
+
negative_prompt=None,
|
333 |
+
infer_steps=100,
|
334 |
+
guidance_scale=6,
|
335 |
+
batch_size=1,
|
336 |
+
src_size_cond=(1024, 1024),
|
337 |
+
sampler=None,
|
338 |
+
):
|
339 |
+
# ========================================================================
|
340 |
+
# Arguments: seed
|
341 |
+
# ========================================================================
|
342 |
+
if seed is None:
|
343 |
+
seed = random.randint(0, 1_000_000)
|
344 |
+
if not isinstance(seed, int):
|
345 |
+
raise TypeError(f"`seed` must be an integer, but got {type(seed)}")
|
346 |
+
generator = set_seeds(seed, device=self.device)
|
347 |
+
# ========================================================================
|
348 |
+
# Arguments: target_width, target_height
|
349 |
+
# ========================================================================
|
350 |
+
if width <= 0 or height <= 0:
|
351 |
+
raise ValueError(f"`height` and `width` must be positive integers, got height={height}, width={width}")
|
352 |
+
logger.info(f"Input (height, width) = ({height}, {width})")
|
353 |
+
if self.infer_mode in ['fa', 'torch']:
|
354 |
+
# We must force height and width to align to 16 and to be an integer.
|
355 |
+
target_height = int((height // 16) * 16)
|
356 |
+
target_width = int((width // 16) * 16)
|
357 |
+
logger.info(f"Align to 16: (height, width) = ({target_height}, {target_width})")
|
358 |
+
elif self.infer_mode == 'trt':
|
359 |
+
target_width, target_height = get_standard_shape(width, height)
|
360 |
+
logger.info(f"Align to standard shape: (height, width) = ({target_height}, {target_width})")
|
361 |
+
else:
|
362 |
+
raise ValueError(f"Unknown infer_mode: {self.infer_mode}")
|
363 |
+
|
364 |
+
# ========================================================================
|
365 |
+
# Arguments: prompt, new_prompt, negative_prompt
|
366 |
+
# ========================================================================
|
367 |
+
if not isinstance(user_prompt, str):
|
368 |
+
raise TypeError(f"`user_prompt` must be a string, but got {type(user_prompt)}")
|
369 |
+
user_prompt = user_prompt.strip()
|
370 |
+
prompt = user_prompt
|
371 |
+
|
372 |
+
if enhanced_prompt is not None:
|
373 |
+
if not isinstance(enhanced_prompt, str):
|
374 |
+
raise TypeError(f"`enhanced_prompt` must be a string, but got {type(enhanced_prompt)}")
|
375 |
+
enhanced_prompt = enhanced_prompt.strip()
|
376 |
+
prompt = enhanced_prompt
|
377 |
+
|
378 |
+
# negative prompt
|
379 |
+
if negative_prompt is None or negative_prompt == '':
|
380 |
+
negative_prompt = self.default_negative_prompt
|
381 |
+
if not isinstance(negative_prompt, str):
|
382 |
+
raise TypeError(f"`negative_prompt` must be a string, but got {type(negative_prompt)}")
|
383 |
+
|
384 |
+
# ========================================================================
|
385 |
+
# Arguments: style. (A fixed argument. Don't Change it.)
|
386 |
+
# ========================================================================
|
387 |
+
style = torch.as_tensor([0, 0] * batch_size, device=self.device)
|
388 |
+
|
389 |
+
# ========================================================================
|
390 |
+
# Inner arguments: image_meta_size (Please refer to SDXL.)
|
391 |
+
# ========================================================================
|
392 |
+
if isinstance(src_size_cond, int):
|
393 |
+
src_size_cond = [src_size_cond, src_size_cond]
|
394 |
+
if not isinstance(src_size_cond, (list, tuple)):
|
395 |
+
raise TypeError(f"`src_size_cond` must be a list or tuple, but got {type(src_size_cond)}")
|
396 |
+
if len(src_size_cond) != 2:
|
397 |
+
raise ValueError(f"`src_size_cond` must be a tuple of 2 integers, but got {len(src_size_cond)}")
|
398 |
+
size_cond = list(src_size_cond) + [target_width, target_height, 0, 0]
|
399 |
+
image_meta_size = torch.as_tensor([size_cond] * 2 * batch_size, device=self.device)
|
400 |
+
|
401 |
+
# ========================================================================
|
402 |
+
start_time = time.time()
|
403 |
+
logger.debug(f"""
|
404 |
+
prompt: {user_prompt}
|
405 |
+
enhanced prompt: {enhanced_prompt}
|
406 |
+
seed: {seed}
|
407 |
+
(height, width): {(target_height, target_width)}
|
408 |
+
negative_prompt: {negative_prompt}
|
409 |
+
batch_size: {batch_size}
|
410 |
+
guidance_scale: {guidance_scale}
|
411 |
+
infer_steps: {infer_steps}
|
412 |
+
image_meta_size: {size_cond}
|
413 |
+
""")
|
414 |
+
reso = f'{target_height}x{target_width}'
|
415 |
+
if reso in self.freqs_cis_img:
|
416 |
+
freqs_cis_img = self.freqs_cis_img[reso]
|
417 |
+
else:
|
418 |
+
freqs_cis_img = self.calc_rope(target_height, target_width)
|
419 |
+
|
420 |
+
if sampler is not None and sampler != self.sampler:
|
421 |
+
self.pipeline, self.sampler = self.load_sampler(sampler)
|
422 |
+
|
423 |
+
samples = self.pipeline(
|
424 |
+
height=target_height,
|
425 |
+
width=target_width,
|
426 |
+
prompt=prompt,
|
427 |
+
negative_prompt=negative_prompt,
|
428 |
+
num_images_per_prompt=batch_size,
|
429 |
+
guidance_scale=guidance_scale,
|
430 |
+
num_inference_steps=infer_steps,
|
431 |
+
image_meta_size=image_meta_size,
|
432 |
+
style=style,
|
433 |
+
return_dict=False,
|
434 |
+
generator=generator,
|
435 |
+
freqs_cis_img=freqs_cis_img,
|
436 |
+
use_fp16=self.args.use_fp16,
|
437 |
+
learn_sigma=self.args.learn_sigma,
|
438 |
+
)[0]
|
439 |
+
gen_time = time.time() - start_time
|
440 |
+
logger.debug(f"Success, time: {gen_time}")
|
441 |
+
|
442 |
+
return {
|
443 |
+
'images': samples,
|
444 |
+
'seed': seed,
|
445 |
+
}
|