hezzze commited on
Commit
0f61401
1 Parent(s): abed00a

Upload PPO LunarLander-v2 trained agent

Browse files
.gitattributes CHANGED
@@ -30,3 +30,4 @@ saved_model/**/* filter=lfs diff=lfs merge=lfs -text
30
  *.zip filter=lfs diff=lfs merge=lfs -text
31
  *.zst filter=lfs diff=lfs merge=lfs -text
32
  *tfevents* filter=lfs diff=lfs merge=lfs -text
 
 
30
  *.zip filter=lfs diff=lfs merge=lfs -text
31
  *.zst filter=lfs diff=lfs merge=lfs -text
32
  *tfevents* filter=lfs diff=lfs merge=lfs -text
33
+ replay.mp4 filter=lfs diff=lfs merge=lfs -text
README.md ADDED
@@ -0,0 +1,36 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ library_name: stable-baselines3
3
+ tags:
4
+ - LunarLander-v2
5
+ - deep-reinforcement-learning
6
+ - reinforcement-learning
7
+ - stable-baselines3
8
+ model-index:
9
+ - name: PPO
10
+ results:
11
+ - metrics:
12
+ - type: mean_reward
13
+ value: 272.33 +/- 17.74
14
+ name: mean_reward
15
+ task:
16
+ type: reinforcement-learning
17
+ name: reinforcement-learning
18
+ dataset:
19
+ name: LunarLander-v2
20
+ type: LunarLander-v2
21
+ ---
22
+
23
+ # **PPO** Agent playing **LunarLander-v2**
24
+ This is a trained model of a **PPO** agent playing **LunarLander-v2**
25
+ using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3).
26
+
27
+ ## Usage (with Stable-baselines3)
28
+ TODO: Add your code
29
+
30
+
31
+ ```python
32
+ from stable_baselines3 import ...
33
+ from huggingface_sb3 import load_from_hub
34
+
35
+ ...
36
+ ```
config.json ADDED
@@ -0,0 +1 @@
 
 
1
+ {"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param sde_net_arch: Network architecture for extracting features\n when using gSDE. If None, the latent features from the policy will be used.\n Pass an empty list to use the states as features.\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function ActorCriticPolicy.__init__ at 0x7f41b1749dd0>", "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7f41b1749e60>", "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7f41b1749ef0>", "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7f41b1749f80>", "_build": "<function ActorCriticPolicy._build at 0x7f41b1751050>", "forward": "<function ActorCriticPolicy.forward at 0x7f41b17510e0>", "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7f41b1751170>", "_predict": "<function ActorCriticPolicy._predict at 0x7f41b1751200>", "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7f41b1751290>", "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7f41b1751320>", "predict_values": "<function ActorCriticPolicy.predict_values at 0x7f41b17513b0>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc_data object at 0x7f41b1798960>"}, "verbose": 1, "policy_kwargs": {}, "observation_space": {":type:": "<class 'gym.spaces.box.Box'>", ":serialized:": "gAWVnwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWIAAAAAAAAAAAAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/5RoCksIhZSMAUOUdJRSlIwEaGlnaJRoEiiWIAAAAAAAAAAAAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAf5RoCksIhZRoFXSUUpSMDWJvdW5kZWRfYmVsb3eUaBIolggAAAAAAAAAAAAAAAAAAACUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLCIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYIAAAAAAAAAAAAAAAAAAAAlGghSwiFlGgVdJRSlIwKX25wX3JhbmRvbZROdWIu", "dtype": "float32", "_shape": [8], "low": "[-inf -inf -inf -inf -inf -inf -inf -inf]", "high": "[inf inf inf inf inf inf inf inf]", "bounded_below": "[False False False False False False False False]", "bounded_above": "[False False False False False False False False]", "_np_random": null}, "action_space": {":type:": "<class 'gym.spaces.discrete.Discrete'>", ":serialized:": "gAWVggAAAAAAAACME2d5bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpRLBIwGX3NoYXBllCmMBWR0eXBllIwFbnVtcHmUaAeTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowKX25wX3JhbmRvbZROdWIu", "n": 4, "_shape": [], "dtype": "int64", "_np_random": null}, "n_envs": 16, "num_timesteps": 2015232, "_total_timesteps": 2000000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1665327484738352399, "learning_rate": 0.0003, "tensorboard_log": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVwQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsBSwFLE0MEiABTAJROhZQpjAFflIWUjEgvdXNyL2xvY2FsL2xpYi9weXRob24zLjcvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuAQwIAAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEgvdXNyL2xvY2FsL2xpYi9weXRob24zLjcvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUdU5OaACMEF9tYWtlX2VtcHR5X2NlbGyUk5QpUpSFlHSUUpSMHGNsb3VkcGlja2xlLmNsb3VkcGlja2xlX2Zhc3SUjBJfZnVuY3Rpb25fc2V0c3RhdGWUk5RoH32UfZQoaBZoDYwMX19xdWFsbmFtZV9flIwZY29uc3RhbnRfZm4uPGxvY2Fscz4uZnVuY5SMD19fYW5ub3RhdGlvbnNfX5R9lIwOX19rd2RlZmF1bHRzX1+UTowMX19kZWZhdWx0c19flE6MCl9fbW9kdWxlX1+UaBeMB19fZG9jX1+UTowLX19jbG9zdXJlX1+UaACMCl9tYWtlX2NlbGyUk5RHPzOpKjBVMmGFlFKUhZSMF19jbG91ZHBpY2tsZV9zdWJtb2R1bGVzlF2UjAtfX2dsb2JhbHNfX5R9lHWGlIZSMC4="}, "_last_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAAGZY3bwQNxI/GqF/PVb/0r759A497C4sPQAAAAAAAAAAjaOvvS7+RD9hS5w9F1jWvicrGL3QMQw+AAAAAAAAAADNwCM9NcSXPxGEkD18Aye/T2jrPDtx+zwAAAAAAAAAADOJ+7xxDhe7mg+gOwcklDxb4i+8anV/PQAAgD8AAIA/gNmiPUl9qT/XSA4/lP3pvvlGdz1yYJg+AAAAAAAAAABmZKc9nOgePVDIpL7+xJG+FAEAvOJJ970AAAAAAAAAADOmsbwUFIS6axiWOubihDUnIBO6mPyuuQAAAAAAAAAAZiaeueGUj7qWW1y914ymPN+8Uzvdvo+9AACAPwAAgD/zOQQ+Cm9Nu6kooL5X3JK+m3FOvTA+8b0AAIA/AAAAAPMpp72PMmi6uIBxr0vzozEKfHo7uiPysgAAgD8AAIA/s3QRvuEZYj/m2pC9ZpwAvwKZLL7eq7o9AAAAAAAAAABmS0G9J5mmPxqncr7/4/++bFKuvWDDd74AAAAAAAAAAGb/oz32PUq8Wia/vvRt671SQLU99r/CPgAAgD8AAIA/sySBvTic57sj1xk8TRAJPNu2Or0ix/E8AACAPwAAgD8ABIs7j1IDvLsz3Txctpg8IilYvTbRfj0AAIA/AACAP80U1rwW2qE/KqR3vcoBBb8TVDu9YtKivQAAAAAAAAAAlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="}, "_last_original_obs": null, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": -0.007616000000000067, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVQBAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIYp6VtCKEckCUhpRSlIwBbJRL3owBdJRHQJ627im2sq91fZQoaAZoCWgPQwgIHt/etXJzQJSGlFKUaBVLz2gWR0Cety0A93bFdX2UKGgGaAloD0MI5dGNsCj1cECUhpRSlGgVTQEBaBZHQJ63wTtb9qF1fZQoaAZoCWgPQwi7050nno1yQJSGlFKUaBVL4GgWR0CeuEczqKP5dX2UKGgGaAloD0MIfJkoQuomcECUhpRSlGgVS9poFkdAnrigXuVopXV9lChoBmgJaA9DCGPRdHZyZnFAlIaUUpRoFU0OAWgWR0CeuM3ta6jGdX2UKGgGaAloD0MI2bPnMrUJcUCUhpRSlGgVTQoBaBZHQJ65XiGWUr11fZQoaAZoCWgPQwgWw9UB0GtyQJSGlFKUaBVL3mgWR0CeuwFVktmMdX2UKGgGaAloD0MI9u0kInwRckCUhpRSlGgVTQMBaBZHQJ67L3UQTVV1fZQoaAZoCWgPQwiUiVsFcZ9wQJSGlFKUaBVL4GgWR0Ceu3SS/0uldX2UKGgGaAloD0MITbotkcuUcECUhpRSlGgVS9RoFkdAnrudk4FRpHV9lChoBmgJaA9DCG1YU1nU9HJAlIaUUpRoFUvraBZHQJ679vGZNPB1fZQoaAZoCWgPQwgqyM9GrlFzQJSGlFKUaBVLzWgWR0CevD2qDK5kdX2UKGgGaAloD0MIUBcplIXhcECUhpRSlGgVS/RoFkdAnrx4mkWRBHV9lChoBmgJaA9DCJgW9UluCHFAlIaUUpRoFUvTaBZHQJ68s89wFTx1fZQoaAZoCWgPQwieX5SgP1xxQJSGlFKUaBVNNwFoFkdAnr1mDcuannV9lChoBmgJaA9DCMpOP6hLd3FAlIaUUpRoFU0PAWgWR0Cevf63y7PIdX2UKGgGaAloD0MIxsIQOT0nc0CUhpRSlGgVS/xoFkdAnr8zaTOgQHV9lChoBmgJaA9DCPyO4bGfn1FAlIaUUpRoFUuSaBZHQJ6/uPJaJRB1fZQoaAZoCWgPQwh646QwbyhzQJSGlFKUaBVNEAFoFkdAnsFLnPmganV9lChoBmgJaA9DCLXEymjkyG9AlIaUUpRoFU0WAWgWR0CewdWAwwj/dX2UKGgGaAloD0MIGVdcHJVQcECUhpRSlGgVTU0BaBZHQJ7CPO0LMLZ1fZQoaAZoCWgPQwgUyy2tBhtyQJSGlFKUaBVNFQFoFkdAnsKDesPrfXV9lChoBmgJaA9DCPOuesA8hXFAlIaUUpRoFUveaBZHQJ7C5jCpFTh1fZQoaAZoCWgPQwi3Jt2WiBFxQJSGlFKUaBVL0WgWR0CewvwQlKK6dX2UKGgGaAloD0MIrRbYY2J6ckCUhpRSlGgVTQQBaBZHQJ7ETRa5f+l1fZQoaAZoCWgPQwgYX7THS6ByQJSGlFKUaBVL5GgWR0CexFfbblBAdX2UKGgGaAloD0MI8tHijOFzckCUhpRSlGgVS+xoFkdAnsTL/CIk7nV9lChoBmgJaA9DCKt3uB0aIHFAlIaUUpRoFUvDaBZHQJ7E00/GEPF1fZQoaAZoCWgPQwi7gJcZ9lZxQJSGlFKUaBVL9mgWR0CexVzU7Sy/dX2UKGgGaAloD0MIeSCySBPnb0CUhpRSlGgVTQEBaBZHQJ7Gbh0hePd1fZQoaAZoCWgPQwjy0eKM4S5xQJSGlFKUaBVL32gWR0CexxO6unuRdX2UKGgGaAloD0MIhA66hEMIckCUhpRSlGgVS79oFkdAnsjkOEug6HV9lChoBmgJaA9DCCV2bW93THFAlIaUUpRoFUvuaBZHQJ7JQzMzMzN1fZQoaAZoCWgPQwiERrBx/TJxQJSGlFKUaBVL+GgWR0CeyesLv1DjdX2UKGgGaAloD0MIZ7RVSeQTc0CUhpRSlGgVS8doFkdAnsoWTcIqsnV9lChoBmgJaA9DCNDVVuzvs3BAlIaUUpRoFU0CAWgWR0Ce31Cr92ovdX2UKGgGaAloD0MIbXTOT3H3ZUCUhpRSlGgVTegDaBZHQJ7fXst03fh1fZQoaAZoCWgPQwhlARO4dddwQJSGlFKUaBVLxGgWR0Ce3/ldTo+wdX2UKGgGaAloD0MIpaMczGbLcUCUhpRSlGgVS/ZoFkdAnt/4jrzGxXV9lChoBmgJaA9DCJMBoIpbNXBAlIaUUpRoFUvOaBZHQJ7gNr56+nJ1fZQoaAZoCWgPQwgyIlFoWZJuQJSGlFKUaBVL4mgWR0Ce4EOxB3RpdX2UKGgGaAloD0MIqAGDpE8acECUhpRSlGgVS9JoFkdAnuDFZkkKNXV9lChoBmgJaA9DCDBK0F9oPW9AlIaUUpRoFU0BAWgWR0Ce4P+2VmjCdX2UKGgGaAloD0MIlzldFhOMcECUhpRSlGgVTSgBaBZHQJ7hKPRzBAR1fZQoaAZoCWgPQwjXbVD77WxyQJSGlFKUaBVL22gWR0Ce4bdat9x7dX2UKGgGaAloD0MIXYb/dANhcUCUhpRSlGgVS+poFkdAnuHGyTpxFXV9lChoBmgJaA9DCO2fpwGDjk1AlIaUUpRoFUubaBZHQJ7iDSofjjt1fZQoaAZoCWgPQwiYLy/AfhlyQJSGlFKUaBVL42gWR0Ce4zvkili0dX2UKGgGaAloD0MIED0pk9rVcECUhpRSlGgVS/loFkdAnuN4MnZ00XV9lChoBmgJaA9DCAKEDyXa63FAlIaUUpRoFUvYaBZHQJ7lFmukk8l1fZQoaAZoCWgPQwiTcYxkz8BwQJSGlFKUaBVL4mgWR0Ce5X/Zdv87dX2UKGgGaAloD0MIq3r5nWZnc0CUhpRSlGgVTREBaBZHQJ7l3/aQFLZ1fZQoaAZoCWgPQwgyVTAqaalxQJSGlFKUaBVL5WgWR0Ce53AfuCwsdX2UKGgGaAloD0MIiBOYTuuUc0CUhpRSlGgVTQIBaBZHQJ7oWgDifg91fZQoaAZoCWgPQwj0iTxJur1vQJSGlFKUaBVL82gWR0Ce6PUcn3L3dX2UKGgGaAloD0MIBwjm6HH5c0CUhpRSlGgVTRcBaBZHQJ7pKhDgIhR1fZQoaAZoCWgPQwgFUfcBiLNzQJSGlFKUaBVNEAFoFkdAnulbxRVIZ3V9lChoBmgJaA9DCOaWVkMiZXFAlIaUUpRoFUvUaBZHQJ7pcVTJhfB1fZQoaAZoCWgPQwhXXYdqyuFxQJSGlFKUaBVLy2gWR0Ce6dAM2FWXdX2UKGgGaAloD0MIxccnZGepbkCUhpRSlGgVS9loFkdAnunbX6InB3V9lChoBmgJaA9DCL2L9+N28m9AlIaUUpRoFU0DAWgWR0Ce6kCPIXCTdX2UKGgGaAloD0MIpYXLKmwXb0CUhpRSlGgVS9RoFkdAnuuqq814xHV9lChoBmgJaA9DCIAnLVxWe29AlIaUUpRoFUvSaBZHQJ7sAAbQ1Jl1fZQoaAZoCWgPQwhn8PeL2WZvQJSGlFKUaBVL1mgWR0Ce7i4bjtG/dX2UKGgGaAloD0MIP/1nzc/2cUCUhpRSlGgVS8loFkdAnu5WkSElFHV9lChoBmgJaA9DCBDM0eO3RHJAlIaUUpRoFUvVaBZHQJ7uZenhsIp1fZQoaAZoCWgPQwgyVTAqqZdvQJSGlFKUaBVL1mgWR0Ce73j5bhWHdX2UKGgGaAloD0MIp+fdWNBIb0CUhpRSlGgVS9ZoFkdAnvAOcYqG13V9lChoBmgJaA9DCEmFsYXgknBAlIaUUpRoFUvIaBZHQJ7wRmwqy4Z1fZQoaAZoCWgPQwi5wyYys3RzQJSGlFKUaBVL0WgWR0Ce8GrksBhhdX2UKGgGaAloD0MIOYB+3z+AcUCUhpRSlGgVS+1oFkdAnvGiKm8/U3V9lChoBmgJaA9DCLmNBvAWnXNAlIaUUpRoFU0MAWgWR0Ce8phybQTmdX2UKGgGaAloD0MIP8bctcSKcUCUhpRSlGgVTQUBaBZHQJ7zKoJiRW91fZQoaAZoCWgPQwj4N2ivfhFzQJSGlFKUaBVL3WgWR0Ce8zgSOBDpdX2UKGgGaAloD0MI/YhfscbVckCUhpRSlGgVTR0BaBZHQJ7zd0/4Zdh1fZQoaAZoCWgPQwicU8kAUOJtQJSGlFKUaBVL72gWR0Ce8/WweNkwdX2UKGgGaAloD0MIs14M5YSGckCUhpRSlGgVTUkBaBZHQJ70wYvWYnh1fZQoaAZoCWgPQwi0rPvHQqluQJSGlFKUaBVL22gWR0Ce9Sxsl9jPdX2UKGgGaAloD0MIt+9Rf73+bkCUhpRSlGgVS81oFkdAnvXdelbeM3V9lChoBmgJaA9DCIpXWduU63FAlIaUUpRoFU0ZAWgWR0Ce9tWf9P1tdX2UKGgGaAloD0MIBp/m5EWYcECUhpRSlGgVTSMBaBZHQJ73VtUGVzJ1fZQoaAZoCWgPQwgm/FI/b/1wQJSGlFKUaBVL7WgWR0Ce97qVyFPBdX2UKGgGaAloD0MIO8WqQZhTZUCUhpRSlGgVTegDaBZHQJ74MzFdcB51fZQoaAZoCWgPQwhZaVIKOgtyQJSGlFKUaBVNEAFoFkdAnviR3qzJIXV9lChoBmgJaA9DCLOWAtJ+qXBAlIaUUpRoFUvlaBZHQJ74w1wYLst1fZQoaAZoCWgPQwhxOV6BKPBwQJSGlFKUaBVNGgFoFkdAnvkpTQ3PzHV9lChoBmgJaA9DCCjueJPfk25AlIaUUpRoFUvoaBZHQJ75oOEug6F1fZQoaAZoCWgPQwhMGTigpZVxQJSGlFKUaBVL42gWR0Ce+e7EpAlfdX2UKGgGaAloD0MIvM0bJ4WXcECUhpRSlGgVS8poFkdAnvn3vlU6xXV9lChoBmgJaA9DCDv9oC5SlXBAlIaUUpRoFUvVaBZHQJ77X0VafSR1fZQoaAZoCWgPQwiEYcCSK4dwQJSGlFKUaBVL5GgWR0Ce+2gRsdkrdX2UKGgGaAloD0MIq7TFNX65cUCUhpRSlGgVTRwBaBZHQJ77ifqX4TN1fZQoaAZoCWgPQwj7yoP0VCRwQJSGlFKUaBVNOAFoFkdAnvyOEEkjYHV9lChoBmgJaA9DCISB597DMXFAlIaUUpRoFU0BAWgWR0Ce/Ue2/i5vdX2UKGgGaAloD0MISUikbfzrckCUhpRSlGgVS+FoFkdAnv1GyLQ5WHV9lChoBmgJaA9DCNaqXRNSknFAlIaUUpRoFUvdaBZHQJ795inYQJ51fZQoaAZoCWgPQwj3lJwTe2NzQJSGlFKUaBVNhwNoFkdAnv4QRXfZVXV9lChoBmgJaA9DCBuDTgidkXJAlIaUUpRoFUvSaBZHQJ7+edd3Srp1fZQoaAZoCWgPQwgqHaz/s8NxQJSGlFKUaBVNBQFoFkdAnv6U4WDYiHVlLg=="}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 492, "n_steps": 1024, "gamma": 0.999, "gae_lambda": 0.98, "ent_coef": 0.01, "vf_coef": 0.5, "max_grad_norm": 0.5, "batch_size": 64, "n_epochs": 4, "clip_range": {":type:": "<class 'function'>", ":serialized:": "gAWVwQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsBSwFLE0MEiABTAJROhZQpjAFflIWUjEgvdXNyL2xvY2FsL2xpYi9weXRob24zLjcvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuAQwIAAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEgvdXNyL2xvY2FsL2xpYi9weXRob24zLjcvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUdU5OaACMEF9tYWtlX2VtcHR5X2NlbGyUk5QpUpSFlHSUUpSMHGNsb3VkcGlja2xlLmNsb3VkcGlja2xlX2Zhc3SUjBJfZnVuY3Rpb25fc2V0c3RhdGWUk5RoH32UfZQoaBZoDYwMX19xdWFsbmFtZV9flIwZY29uc3RhbnRfZm4uPGxvY2Fscz4uZnVuY5SMD19fYW5ub3RhdGlvbnNfX5R9lIwOX19rd2RlZmF1bHRzX1+UTowMX19kZWZhdWx0c19flE6MCl9fbW9kdWxlX1+UaBeMB19fZG9jX1+UTowLX19jbG9zdXJlX1+UaACMCl9tYWtlX2NlbGyUk5RHP8mZmZmZmZqFlFKUhZSMF19jbG91ZHBpY2tsZV9zdWJtb2R1bGVzlF2UjAtfX2dsb2JhbHNfX5R9lHWGlIZSMC4="}, "clip_range_vf": null, "normalize_advantage": true, "target_kl": null, "system_info": {"OS": "Linux-5.10.133+-x86_64-with-Ubuntu-18.04-bionic #1 SMP Fri Aug 26 08:44:51 UTC 2022", "Python": "3.7.14", "Stable-Baselines3": "1.6.1", "PyTorch": "1.12.1+cu113", "GPU Enabled": "True", "Numpy": "1.21.6", "Gym": "0.21.0"}}
ppo-LunarLander-v2.zip ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:3666e99818c58ed834aaf8d7579589fd98309bcae1337f7eeae420eefa24e2bd
3
+ size 147072
ppo-LunarLander-v2/_stable_baselines3_version ADDED
@@ -0,0 +1 @@
 
 
1
+ 1.6.1
ppo-LunarLander-v2/data ADDED
@@ -0,0 +1,94 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "policy_class": {
3
+ ":type:": "<class 'abc.ABCMeta'>",
4
+ ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==",
5
+ "__module__": "stable_baselines3.common.policies",
6
+ "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param sde_net_arch: Network architecture for extracting features\n when using gSDE. If None, the latent features from the policy will be used.\n Pass an empty list to use the states as features.\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ",
7
+ "__init__": "<function ActorCriticPolicy.__init__ at 0x7f41b1749dd0>",
8
+ "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7f41b1749e60>",
9
+ "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7f41b1749ef0>",
10
+ "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7f41b1749f80>",
11
+ "_build": "<function ActorCriticPolicy._build at 0x7f41b1751050>",
12
+ "forward": "<function ActorCriticPolicy.forward at 0x7f41b17510e0>",
13
+ "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7f41b1751170>",
14
+ "_predict": "<function ActorCriticPolicy._predict at 0x7f41b1751200>",
15
+ "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7f41b1751290>",
16
+ "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7f41b1751320>",
17
+ "predict_values": "<function ActorCriticPolicy.predict_values at 0x7f41b17513b0>",
18
+ "__abstractmethods__": "frozenset()",
19
+ "_abc_impl": "<_abc_data object at 0x7f41b1798960>"
20
+ },
21
+ "verbose": 1,
22
+ "policy_kwargs": {},
23
+ "observation_space": {
24
+ ":type:": "<class 'gym.spaces.box.Box'>",
25
+ ":serialized:": "gAWVnwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWIAAAAAAAAAAAAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/5RoCksIhZSMAUOUdJRSlIwEaGlnaJRoEiiWIAAAAAAAAAAAAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAf5RoCksIhZRoFXSUUpSMDWJvdW5kZWRfYmVsb3eUaBIolggAAAAAAAAAAAAAAAAAAACUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLCIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYIAAAAAAAAAAAAAAAAAAAAlGghSwiFlGgVdJRSlIwKX25wX3JhbmRvbZROdWIu",
26
+ "dtype": "float32",
27
+ "_shape": [
28
+ 8
29
+ ],
30
+ "low": "[-inf -inf -inf -inf -inf -inf -inf -inf]",
31
+ "high": "[inf inf inf inf inf inf inf inf]",
32
+ "bounded_below": "[False False False False False False False False]",
33
+ "bounded_above": "[False False False False False False False False]",
34
+ "_np_random": null
35
+ },
36
+ "action_space": {
37
+ ":type:": "<class 'gym.spaces.discrete.Discrete'>",
38
+ ":serialized:": "gAWVggAAAAAAAACME2d5bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpRLBIwGX3NoYXBllCmMBWR0eXBllIwFbnVtcHmUaAeTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowKX25wX3JhbmRvbZROdWIu",
39
+ "n": 4,
40
+ "_shape": [],
41
+ "dtype": "int64",
42
+ "_np_random": null
43
+ },
44
+ "n_envs": 16,
45
+ "num_timesteps": 2015232,
46
+ "_total_timesteps": 2000000,
47
+ "_num_timesteps_at_start": 0,
48
+ "seed": null,
49
+ "action_noise": null,
50
+ "start_time": 1665327484738352399,
51
+ "learning_rate": 0.0003,
52
+ "tensorboard_log": null,
53
+ "lr_schedule": {
54
+ ":type:": "<class 'function'>",
55
+ ":serialized:": "gAWVwQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsBSwFLE0MEiABTAJROhZQpjAFflIWUjEgvdXNyL2xvY2FsL2xpYi9weXRob24zLjcvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuAQwIAAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEgvdXNyL2xvY2FsL2xpYi9weXRob24zLjcvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUdU5OaACMEF9tYWtlX2VtcHR5X2NlbGyUk5QpUpSFlHSUUpSMHGNsb3VkcGlja2xlLmNsb3VkcGlja2xlX2Zhc3SUjBJfZnVuY3Rpb25fc2V0c3RhdGWUk5RoH32UfZQoaBZoDYwMX19xdWFsbmFtZV9flIwZY29uc3RhbnRfZm4uPGxvY2Fscz4uZnVuY5SMD19fYW5ub3RhdGlvbnNfX5R9lIwOX19rd2RlZmF1bHRzX1+UTowMX19kZWZhdWx0c19flE6MCl9fbW9kdWxlX1+UaBeMB19fZG9jX1+UTowLX19jbG9zdXJlX1+UaACMCl9tYWtlX2NlbGyUk5RHPzOpKjBVMmGFlFKUhZSMF19jbG91ZHBpY2tsZV9zdWJtb2R1bGVzlF2UjAtfX2dsb2JhbHNfX5R9lHWGlIZSMC4="
56
+ },
57
+ "_last_obs": {
58
+ ":type:": "<class 'numpy.ndarray'>",
59
+ ":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAAGZY3bwQNxI/GqF/PVb/0r759A497C4sPQAAAAAAAAAAjaOvvS7+RD9hS5w9F1jWvicrGL3QMQw+AAAAAAAAAADNwCM9NcSXPxGEkD18Aye/T2jrPDtx+zwAAAAAAAAAADOJ+7xxDhe7mg+gOwcklDxb4i+8anV/PQAAgD8AAIA/gNmiPUl9qT/XSA4/lP3pvvlGdz1yYJg+AAAAAAAAAABmZKc9nOgePVDIpL7+xJG+FAEAvOJJ970AAAAAAAAAADOmsbwUFIS6axiWOubihDUnIBO6mPyuuQAAAAAAAAAAZiaeueGUj7qWW1y914ymPN+8Uzvdvo+9AACAPwAAgD/zOQQ+Cm9Nu6kooL5X3JK+m3FOvTA+8b0AAIA/AAAAAPMpp72PMmi6uIBxr0vzozEKfHo7uiPysgAAgD8AAIA/s3QRvuEZYj/m2pC9ZpwAvwKZLL7eq7o9AAAAAAAAAABmS0G9J5mmPxqncr7/4/++bFKuvWDDd74AAAAAAAAAAGb/oz32PUq8Wia/vvRt671SQLU99r/CPgAAgD8AAIA/sySBvTic57sj1xk8TRAJPNu2Or0ix/E8AACAPwAAgD8ABIs7j1IDvLsz3Txctpg8IilYvTbRfj0AAIA/AACAP80U1rwW2qE/KqR3vcoBBb8TVDu9YtKivQAAAAAAAAAAlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="
60
+ },
61
+ "_last_episode_starts": {
62
+ ":type:": "<class 'numpy.ndarray'>",
63
+ ":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="
64
+ },
65
+ "_last_original_obs": null,
66
+ "_episode_num": 0,
67
+ "use_sde": false,
68
+ "sde_sample_freq": -1,
69
+ "_current_progress_remaining": -0.007616000000000067,
70
+ "ep_info_buffer": {
71
+ ":type:": "<class 'collections.deque'>",
72
+ ":serialized:": "gAWVQBAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIYp6VtCKEckCUhpRSlIwBbJRL3owBdJRHQJ627im2sq91fZQoaAZoCWgPQwgIHt/etXJzQJSGlFKUaBVLz2gWR0Cety0A93bFdX2UKGgGaAloD0MI5dGNsCj1cECUhpRSlGgVTQEBaBZHQJ63wTtb9qF1fZQoaAZoCWgPQwi7050nno1yQJSGlFKUaBVL4GgWR0CeuEczqKP5dX2UKGgGaAloD0MIfJkoQuomcECUhpRSlGgVS9poFkdAnrigXuVopXV9lChoBmgJaA9DCGPRdHZyZnFAlIaUUpRoFU0OAWgWR0CeuM3ta6jGdX2UKGgGaAloD0MI2bPnMrUJcUCUhpRSlGgVTQoBaBZHQJ65XiGWUr11fZQoaAZoCWgPQwgWw9UB0GtyQJSGlFKUaBVL3mgWR0CeuwFVktmMdX2UKGgGaAloD0MI9u0kInwRckCUhpRSlGgVTQMBaBZHQJ67L3UQTVV1fZQoaAZoCWgPQwiUiVsFcZ9wQJSGlFKUaBVL4GgWR0Ceu3SS/0uldX2UKGgGaAloD0MITbotkcuUcECUhpRSlGgVS9RoFkdAnrudk4FRpHV9lChoBmgJaA9DCG1YU1nU9HJAlIaUUpRoFUvraBZHQJ679vGZNPB1fZQoaAZoCWgPQwgqyM9GrlFzQJSGlFKUaBVLzWgWR0CevD2qDK5kdX2UKGgGaAloD0MIUBcplIXhcECUhpRSlGgVS/RoFkdAnrx4mkWRBHV9lChoBmgJaA9DCJgW9UluCHFAlIaUUpRoFUvTaBZHQJ68s89wFTx1fZQoaAZoCWgPQwieX5SgP1xxQJSGlFKUaBVNNwFoFkdAnr1mDcuannV9lChoBmgJaA9DCMpOP6hLd3FAlIaUUpRoFU0PAWgWR0Cevf63y7PIdX2UKGgGaAloD0MIxsIQOT0nc0CUhpRSlGgVS/xoFkdAnr8zaTOgQHV9lChoBmgJaA9DCPyO4bGfn1FAlIaUUpRoFUuSaBZHQJ6/uPJaJRB1fZQoaAZoCWgPQwh646QwbyhzQJSGlFKUaBVNEAFoFkdAnsFLnPmganV9lChoBmgJaA9DCLXEymjkyG9AlIaUUpRoFU0WAWgWR0CewdWAwwj/dX2UKGgGaAloD0MIGVdcHJVQcECUhpRSlGgVTU0BaBZHQJ7CPO0LMLZ1fZQoaAZoCWgPQwgUyy2tBhtyQJSGlFKUaBVNFQFoFkdAnsKDesPrfXV9lChoBmgJaA9DCPOuesA8hXFAlIaUUpRoFUveaBZHQJ7C5jCpFTh1fZQoaAZoCWgPQwi3Jt2WiBFxQJSGlFKUaBVL0WgWR0CewvwQlKK6dX2UKGgGaAloD0MIrRbYY2J6ckCUhpRSlGgVTQQBaBZHQJ7ETRa5f+l1fZQoaAZoCWgPQwgYX7THS6ByQJSGlFKUaBVL5GgWR0CexFfbblBAdX2UKGgGaAloD0MI8tHijOFzckCUhpRSlGgVS+xoFkdAnsTL/CIk7nV9lChoBmgJaA9DCKt3uB0aIHFAlIaUUpRoFUvDaBZHQJ7E00/GEPF1fZQoaAZoCWgPQwi7gJcZ9lZxQJSGlFKUaBVL9mgWR0CexVzU7Sy/dX2UKGgGaAloD0MIeSCySBPnb0CUhpRSlGgVTQEBaBZHQJ7Gbh0hePd1fZQoaAZoCWgPQwjy0eKM4S5xQJSGlFKUaBVL32gWR0CexxO6unuRdX2UKGgGaAloD0MIhA66hEMIckCUhpRSlGgVS79oFkdAnsjkOEug6HV9lChoBmgJaA9DCCV2bW93THFAlIaUUpRoFUvuaBZHQJ7JQzMzMzN1fZQoaAZoCWgPQwiERrBx/TJxQJSGlFKUaBVL+GgWR0CeyesLv1DjdX2UKGgGaAloD0MIZ7RVSeQTc0CUhpRSlGgVS8doFkdAnsoWTcIqsnV9lChoBmgJaA9DCNDVVuzvs3BAlIaUUpRoFU0CAWgWR0Ce31Cr92ovdX2UKGgGaAloD0MIbXTOT3H3ZUCUhpRSlGgVTegDaBZHQJ7fXst03fh1fZQoaAZoCWgPQwhlARO4dddwQJSGlFKUaBVLxGgWR0Ce3/ldTo+wdX2UKGgGaAloD0MIpaMczGbLcUCUhpRSlGgVS/ZoFkdAnt/4jrzGxXV9lChoBmgJaA9DCJMBoIpbNXBAlIaUUpRoFUvOaBZHQJ7gNr56+nJ1fZQoaAZoCWgPQwgyIlFoWZJuQJSGlFKUaBVL4mgWR0Ce4EOxB3RpdX2UKGgGaAloD0MIqAGDpE8acECUhpRSlGgVS9JoFkdAnuDFZkkKNXV9lChoBmgJaA9DCDBK0F9oPW9AlIaUUpRoFU0BAWgWR0Ce4P+2VmjCdX2UKGgGaAloD0MIlzldFhOMcECUhpRSlGgVTSgBaBZHQJ7hKPRzBAR1fZQoaAZoCWgPQwjXbVD77WxyQJSGlFKUaBVL22gWR0Ce4bdat9x7dX2UKGgGaAloD0MIXYb/dANhcUCUhpRSlGgVS+poFkdAnuHGyTpxFXV9lChoBmgJaA9DCO2fpwGDjk1AlIaUUpRoFUubaBZHQJ7iDSofjjt1fZQoaAZoCWgPQwiYLy/AfhlyQJSGlFKUaBVL42gWR0Ce4zvkili0dX2UKGgGaAloD0MIED0pk9rVcECUhpRSlGgVS/loFkdAnuN4MnZ00XV9lChoBmgJaA9DCAKEDyXa63FAlIaUUpRoFUvYaBZHQJ7lFmukk8l1fZQoaAZoCWgPQwiTcYxkz8BwQJSGlFKUaBVL4mgWR0Ce5X/Zdv87dX2UKGgGaAloD0MIq3r5nWZnc0CUhpRSlGgVTREBaBZHQJ7l3/aQFLZ1fZQoaAZoCWgPQwgyVTAqaalxQJSGlFKUaBVL5WgWR0Ce53AfuCwsdX2UKGgGaAloD0MIiBOYTuuUc0CUhpRSlGgVTQIBaBZHQJ7oWgDifg91fZQoaAZoCWgPQwj0iTxJur1vQJSGlFKUaBVL82gWR0Ce6PUcn3L3dX2UKGgGaAloD0MIBwjm6HH5c0CUhpRSlGgVTRcBaBZHQJ7pKhDgIhR1fZQoaAZoCWgPQwgFUfcBiLNzQJSGlFKUaBVNEAFoFkdAnulbxRVIZ3V9lChoBmgJaA9DCOaWVkMiZXFAlIaUUpRoFUvUaBZHQJ7pcVTJhfB1fZQoaAZoCWgPQwhXXYdqyuFxQJSGlFKUaBVLy2gWR0Ce6dAM2FWXdX2UKGgGaAloD0MIxccnZGepbkCUhpRSlGgVS9loFkdAnunbX6InB3V9lChoBmgJaA9DCL2L9+N28m9AlIaUUpRoFU0DAWgWR0Ce6kCPIXCTdX2UKGgGaAloD0MIpYXLKmwXb0CUhpRSlGgVS9RoFkdAnuuqq814xHV9lChoBmgJaA9DCIAnLVxWe29AlIaUUpRoFUvSaBZHQJ7sAAbQ1Jl1fZQoaAZoCWgPQwhn8PeL2WZvQJSGlFKUaBVL1mgWR0Ce7i4bjtG/dX2UKGgGaAloD0MIP/1nzc/2cUCUhpRSlGgVS8loFkdAnu5WkSElFHV9lChoBmgJaA9DCBDM0eO3RHJAlIaUUpRoFUvVaBZHQJ7uZenhsIp1fZQoaAZoCWgPQwgyVTAqqZdvQJSGlFKUaBVL1mgWR0Ce73j5bhWHdX2UKGgGaAloD0MIp+fdWNBIb0CUhpRSlGgVS9ZoFkdAnvAOcYqG13V9lChoBmgJaA9DCEmFsYXgknBAlIaUUpRoFUvIaBZHQJ7wRmwqy4Z1fZQoaAZoCWgPQwi5wyYys3RzQJSGlFKUaBVL0WgWR0Ce8GrksBhhdX2UKGgGaAloD0MIOYB+3z+AcUCUhpRSlGgVS+1oFkdAnvGiKm8/U3V9lChoBmgJaA9DCLmNBvAWnXNAlIaUUpRoFU0MAWgWR0Ce8phybQTmdX2UKGgGaAloD0MIP8bctcSKcUCUhpRSlGgVTQUBaBZHQJ7zKoJiRW91fZQoaAZoCWgPQwj4N2ivfhFzQJSGlFKUaBVL3WgWR0Ce8zgSOBDpdX2UKGgGaAloD0MI/YhfscbVckCUhpRSlGgVTR0BaBZHQJ7zd0/4Zdh1fZQoaAZoCWgPQwicU8kAUOJtQJSGlFKUaBVL72gWR0Ce8/WweNkwdX2UKGgGaAloD0MIs14M5YSGckCUhpRSlGgVTUkBaBZHQJ70wYvWYnh1fZQoaAZoCWgPQwi0rPvHQqluQJSGlFKUaBVL22gWR0Ce9Sxsl9jPdX2UKGgGaAloD0MIt+9Rf73+bkCUhpRSlGgVS81oFkdAnvXdelbeM3V9lChoBmgJaA9DCIpXWduU63FAlIaUUpRoFU0ZAWgWR0Ce9tWf9P1tdX2UKGgGaAloD0MIBp/m5EWYcECUhpRSlGgVTSMBaBZHQJ73VtUGVzJ1fZQoaAZoCWgPQwgm/FI/b/1wQJSGlFKUaBVL7WgWR0Ce97qVyFPBdX2UKGgGaAloD0MIO8WqQZhTZUCUhpRSlGgVTegDaBZHQJ74MzFdcB51fZQoaAZoCWgPQwhZaVIKOgtyQJSGlFKUaBVNEAFoFkdAnviR3qzJIXV9lChoBmgJaA9DCLOWAtJ+qXBAlIaUUpRoFUvlaBZHQJ74w1wYLst1fZQoaAZoCWgPQwhxOV6BKPBwQJSGlFKUaBVNGgFoFkdAnvkpTQ3PzHV9lChoBmgJaA9DCCjueJPfk25AlIaUUpRoFUvoaBZHQJ75oOEug6F1fZQoaAZoCWgPQwhMGTigpZVxQJSGlFKUaBVL42gWR0Ce+e7EpAlfdX2UKGgGaAloD0MIvM0bJ4WXcECUhpRSlGgVS8poFkdAnvn3vlU6xXV9lChoBmgJaA9DCDv9oC5SlXBAlIaUUpRoFUvVaBZHQJ77X0VafSR1fZQoaAZoCWgPQwiEYcCSK4dwQJSGlFKUaBVL5GgWR0Ce+2gRsdkrdX2UKGgGaAloD0MIq7TFNX65cUCUhpRSlGgVTRwBaBZHQJ77ifqX4TN1fZQoaAZoCWgPQwj7yoP0VCRwQJSGlFKUaBVNOAFoFkdAnvyOEEkjYHV9lChoBmgJaA9DCISB597DMXFAlIaUUpRoFU0BAWgWR0Ce/Ue2/i5vdX2UKGgGaAloD0MISUikbfzrckCUhpRSlGgVS+FoFkdAnv1GyLQ5WHV9lChoBmgJaA9DCNaqXRNSknFAlIaUUpRoFUvdaBZHQJ795inYQJ51fZQoaAZoCWgPQwj3lJwTe2NzQJSGlFKUaBVNhwNoFkdAnv4QRXfZVXV9lChoBmgJaA9DCBuDTgidkXJAlIaUUpRoFUvSaBZHQJ7+edd3Srp1fZQoaAZoCWgPQwgqHaz/s8NxQJSGlFKUaBVNBQFoFkdAnv6U4WDYiHVlLg=="
73
+ },
74
+ "ep_success_buffer": {
75
+ ":type:": "<class 'collections.deque'>",
76
+ ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="
77
+ },
78
+ "_n_updates": 492,
79
+ "n_steps": 1024,
80
+ "gamma": 0.999,
81
+ "gae_lambda": 0.98,
82
+ "ent_coef": 0.01,
83
+ "vf_coef": 0.5,
84
+ "max_grad_norm": 0.5,
85
+ "batch_size": 64,
86
+ "n_epochs": 4,
87
+ "clip_range": {
88
+ ":type:": "<class 'function'>",
89
+ ":serialized:": "gAWVwQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsBSwFLE0MEiABTAJROhZQpjAFflIWUjEgvdXNyL2xvY2FsL2xpYi9weXRob24zLjcvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuAQwIAAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEgvdXNyL2xvY2FsL2xpYi9weXRob24zLjcvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUdU5OaACMEF9tYWtlX2VtcHR5X2NlbGyUk5QpUpSFlHSUUpSMHGNsb3VkcGlja2xlLmNsb3VkcGlja2xlX2Zhc3SUjBJfZnVuY3Rpb25fc2V0c3RhdGWUk5RoH32UfZQoaBZoDYwMX19xdWFsbmFtZV9flIwZY29uc3RhbnRfZm4uPGxvY2Fscz4uZnVuY5SMD19fYW5ub3RhdGlvbnNfX5R9lIwOX19rd2RlZmF1bHRzX1+UTowMX19kZWZhdWx0c19flE6MCl9fbW9kdWxlX1+UaBeMB19fZG9jX1+UTowLX19jbG9zdXJlX1+UaACMCl9tYWtlX2NlbGyUk5RHP8mZmZmZmZqFlFKUhZSMF19jbG91ZHBpY2tsZV9zdWJtb2R1bGVzlF2UjAtfX2dsb2JhbHNfX5R9lHWGlIZSMC4="
90
+ },
91
+ "clip_range_vf": null,
92
+ "normalize_advantage": true,
93
+ "target_kl": null
94
+ }
ppo-LunarLander-v2/policy.optimizer.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:5bf1e8074d80e069c5c5595111d536086e62eab07cfa397a4d4469c24f291725
3
+ size 87865
ppo-LunarLander-v2/policy.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:7174b7b28f9be56a2d724ee9df5700fcab50841ef609361b04ed78bb334a4f53
3
+ size 43201
ppo-LunarLander-v2/pytorch_variables.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:d030ad8db708280fcae77d87e973102039acd23a11bdecc3db8eb6c0ac940ee1
3
+ size 431
ppo-LunarLander-v2/system_info.txt ADDED
@@ -0,0 +1,7 @@
 
 
 
 
 
 
 
 
1
+ OS: Linux-5.10.133+-x86_64-with-Ubuntu-18.04-bionic #1 SMP Fri Aug 26 08:44:51 UTC 2022
2
+ Python: 3.7.14
3
+ Stable-Baselines3: 1.6.1
4
+ PyTorch: 1.12.1+cu113
5
+ GPU Enabled: True
6
+ Numpy: 1.21.6
7
+ Gym: 0.21.0
replay.mp4 ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:b57ff50a07454a15875518b705f9320df7c4475981c1cfca638a58e6dc6452d5
3
+ size 192597
results.json ADDED
@@ -0,0 +1 @@
 
 
1
+ {"mean_reward": 272.3327346759925, "std_reward": 17.743687098613933, "is_deterministic": true, "n_eval_episodes": 10, "eval_datetime": "2022-10-09T15:52:37.473211"}