patrickvonplaten commited on
Commit
871f1b5
1 Parent(s): a53c3fa

Create my_scheduler.py

Browse files
Files changed (1) hide show
  1. scheduler/my_scheduler.py +514 -0
scheduler/my_scheduler.py ADDED
@@ -0,0 +1,514 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # Copyright 2023 UC Berkeley Team and The HuggingFace Team. All rights reserved.
2
+ #
3
+ # Licensed under the Apache License, Version 2.0 (the "License");
4
+ # you may not use this file except in compliance with the License.
5
+ # You may obtain a copy of the License at
6
+ #
7
+ # http://www.apache.org/licenses/LICENSE-2.0
8
+ #
9
+ # Unless required by applicable law or agreed to in writing, software
10
+ # distributed under the License is distributed on an "AS IS" BASIS,
11
+ # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
12
+ # See the License for the specific language governing permissions and
13
+ # limitations under the License.
14
+
15
+ # DISCLAIMER: This file is strongly influenced by https://github.com/ermongroup/ddim
16
+
17
+ import math
18
+ from dataclasses import dataclass
19
+ from typing import List, Optional, Tuple, Union
20
+
21
+ import numpy as np
22
+ import torch
23
+
24
+ from diffusers.configuration_utils import ConfigMixin, register_to_config
25
+ from diffusers.utils import BaseOutput
26
+ from diffusers.utils.torch_utils import randn_tensor
27
+ from diffusers.scheduling_utils import KarrasDiffusionSchedulers, SchedulerMixin
28
+
29
+
30
+ @dataclass
31
+ class MySchedulerOutput(BaseOutput):
32
+ """
33
+ Output class for the scheduler's `step` function output.
34
+
35
+ Args:
36
+ prev_sample (`torch.FloatTensor` of shape `(batch_size, num_channels, height, width)` for images):
37
+ Computed sample `(x_{t-1})` of previous timestep. `prev_sample` should be used as next model input in the
38
+ denoising loop.
39
+ pred_original_sample (`torch.FloatTensor` of shape `(batch_size, num_channels, height, width)` for images):
40
+ The predicted denoised sample `(x_{0})` based on the model output from the current timestep.
41
+ `pred_original_sample` can be used to preview progress or for guidance.
42
+ """
43
+
44
+ prev_sample: torch.FloatTensor
45
+ pred_original_sample: Optional[torch.FloatTensor] = None
46
+
47
+
48
+ def betas_for_alpha_bar(
49
+ num_diffusion_timesteps,
50
+ max_beta=0.999,
51
+ alpha_transform_type="cosine",
52
+ ):
53
+ """
54
+ Create a beta schedule that discretizes the given alpha_t_bar function, which defines the cumulative product of
55
+ (1-beta) over time from t = [0,1].
56
+
57
+ Contains a function alpha_bar that takes an argument t and transforms it to the cumulative product of (1-beta) up
58
+ to that part of the diffusion process.
59
+
60
+
61
+ Args:
62
+ num_diffusion_timesteps (`int`): the number of betas to produce.
63
+ max_beta (`float`): the maximum beta to use; use values lower than 1 to
64
+ prevent singularities.
65
+ alpha_transform_type (`str`, *optional*, default to `cosine`): the type of noise schedule for alpha_bar.
66
+ Choose from `cosine` or `exp`
67
+
68
+ Returns:
69
+ betas (`np.ndarray`): the betas used by the scheduler to step the model outputs
70
+ """
71
+ if alpha_transform_type == "cosine":
72
+
73
+ def alpha_bar_fn(t):
74
+ return math.cos((t + 0.008) / 1.008 * math.pi / 2) ** 2
75
+
76
+ elif alpha_transform_type == "exp":
77
+
78
+ def alpha_bar_fn(t):
79
+ return math.exp(t * -12.0)
80
+
81
+ else:
82
+ raise ValueError(f"Unsupported alpha_tranform_type: {alpha_transform_type}")
83
+
84
+ betas = []
85
+ for i in range(num_diffusion_timesteps):
86
+ t1 = i / num_diffusion_timesteps
87
+ t2 = (i + 1) / num_diffusion_timesteps
88
+ betas.append(min(1 - alpha_bar_fn(t2) / alpha_bar_fn(t1), max_beta))
89
+ return torch.tensor(betas, dtype=torch.float32)
90
+
91
+
92
+ class MyScheduler(SchedulerMixin, ConfigMixin):
93
+ """
94
+ `MyScheduler` explores the connections between denoising score matching and Langevin dynamics sampling.
95
+
96
+ This model inherits from [`SchedulerMixin`] and [`ConfigMixin`]. Check the superclass documentation for the generic
97
+ methods the library implements for all schedulers such as loading and saving.
98
+
99
+ Args:
100
+ num_train_timesteps (`int`, defaults to 1000):
101
+ The number of diffusion steps to train the model.
102
+ beta_start (`float`, defaults to 0.0001):
103
+ The starting `beta` value of inference.
104
+ beta_end (`float`, defaults to 0.02):
105
+ The final `beta` value.
106
+ beta_schedule (`str`, defaults to `"linear"`):
107
+ The beta schedule, a mapping from a beta range to a sequence of betas for stepping the model. Choose from
108
+ `linear`, `scaled_linear`, or `squaredcos_cap_v2`.
109
+ variance_type (`str`, defaults to `"fixed_small"`):
110
+ Clip the variance when adding noise to the denoised sample. Choose from `fixed_small`, `fixed_small_log`,
111
+ `fixed_large`, `fixed_large_log`, `learned` or `learned_range`.
112
+ clip_sample (`bool`, defaults to `True`):
113
+ Clip the predicted sample for numerical stability.
114
+ clip_sample_range (`float`, defaults to 1.0):
115
+ The maximum magnitude for sample clipping. Valid only when `clip_sample=True`.
116
+ prediction_type (`str`, defaults to `epsilon`, *optional*):
117
+ Prediction type of the scheduler function; can be `epsilon` (predicts the noise of the diffusion process),
118
+ `sample` (directly predicts the noisy sample`) or `v_prediction` (see section 2.4 of [Imagen
119
+ Video](https://imagen.research.google/video/paper.pdf) paper).
120
+ thresholding (`bool`, defaults to `False`):
121
+ Whether to use the "dynamic thresholding" method. This is unsuitable for latent-space diffusion models such
122
+ as Stable Diffusion.
123
+ dynamic_thresholding_ratio (`float`, defaults to 0.995):
124
+ The ratio for the dynamic thresholding method. Valid only when `thresholding=True`.
125
+ sample_max_value (`float`, defaults to 1.0):
126
+ The threshold value for dynamic thresholding. Valid only when `thresholding=True`.
127
+ timestep_spacing (`str`, defaults to `"leading"`):
128
+ The way the timesteps should be scaled. Refer to Table 2 of the [Common Diffusion Noise Schedules and
129
+ Sample Steps are Flawed](https://huggingface.co/papers/2305.08891) for more information.
130
+ steps_offset (`int`, defaults to 0):
131
+ An offset added to the inference steps. You can use a combination of `offset=1` and
132
+ `set_alpha_to_one=False` to make the last step use step 0 for the previous alpha product like in Stable
133
+ Diffusion.
134
+ """
135
+
136
+ _compatibles = [e.name for e in KarrasDiffusionSchedulers]
137
+ order = 1
138
+
139
+ @register_to_config
140
+ def __init__(
141
+ self,
142
+ num_train_timesteps: int = 1000,
143
+ beta_start: float = 0.0001,
144
+ beta_end: float = 0.02,
145
+ beta_schedule: str = "linear",
146
+ trained_betas: Optional[Union[np.ndarray, List[float]]] = None,
147
+ variance_type: str = "fixed_small",
148
+ clip_sample: bool = True,
149
+ prediction_type: str = "epsilon",
150
+ thresholding: bool = False,
151
+ dynamic_thresholding_ratio: float = 0.995,
152
+ clip_sample_range: float = 1.0,
153
+ sample_max_value: float = 1.0,
154
+ timestep_spacing: str = "leading",
155
+ steps_offset: int = 0,
156
+ ):
157
+ if trained_betas is not None:
158
+ self.betas = torch.tensor(trained_betas, dtype=torch.float32)
159
+ elif beta_schedule == "linear":
160
+ self.betas = torch.linspace(beta_start, beta_end, num_train_timesteps, dtype=torch.float32)
161
+ elif beta_schedule == "scaled_linear":
162
+ # this schedule is very specific to the latent diffusion model.
163
+ self.betas = (
164
+ torch.linspace(beta_start**0.5, beta_end**0.5, num_train_timesteps, dtype=torch.float32) ** 2
165
+ )
166
+ elif beta_schedule == "squaredcos_cap_v2":
167
+ # Glide cosine schedule
168
+ self.betas = betas_for_alpha_bar(num_train_timesteps)
169
+ elif beta_schedule == "sigmoid":
170
+ # GeoDiff sigmoid schedule
171
+ betas = torch.linspace(-6, 6, num_train_timesteps)
172
+ self.betas = torch.sigmoid(betas) * (beta_end - beta_start) + beta_start
173
+ else:
174
+ raise NotImplementedError(f"{beta_schedule} does is not implemented for {self.__class__}")
175
+
176
+ self.alphas = 1.0 - self.betas
177
+ self.alphas_cumprod = torch.cumprod(self.alphas, dim=0)
178
+ self.one = torch.tensor(1.0)
179
+
180
+ # standard deviation of the initial noise distribution
181
+ self.init_noise_sigma = 1.0
182
+
183
+ # setable values
184
+ self.custom_timesteps = False
185
+ self.num_inference_steps = None
186
+ self.timesteps = torch.from_numpy(np.arange(0, num_train_timesteps)[::-1].copy())
187
+
188
+ self.variance_type = variance_type
189
+
190
+ def scale_model_input(self, sample: torch.FloatTensor, timestep: Optional[int] = None) -> torch.FloatTensor:
191
+ """
192
+ Ensures interchangeability with schedulers that need to scale the denoising model input depending on the
193
+ current timestep.
194
+
195
+ Args:
196
+ sample (`torch.FloatTensor`):
197
+ The input sample.
198
+ timestep (`int`, *optional*):
199
+ The current timestep in the diffusion chain.
200
+
201
+ Returns:
202
+ `torch.FloatTensor`:
203
+ A scaled input sample.
204
+ """
205
+ return sample
206
+
207
+ def set_timesteps(
208
+ self,
209
+ num_inference_steps: Optional[int] = None,
210
+ device: Union[str, torch.device] = None,
211
+ timesteps: Optional[List[int]] = None,
212
+ ):
213
+ """
214
+ Sets the discrete timesteps used for the diffusion chain (to be run before inference).
215
+
216
+ Args:
217
+ num_inference_steps (`int`):
218
+ The number of diffusion steps used when generating samples with a pre-trained model. If used,
219
+ `timesteps` must be `None`.
220
+ device (`str` or `torch.device`, *optional*):
221
+ The device to which the timesteps should be moved to. If `None`, the timesteps are not moved.
222
+ timesteps (`List[int]`, *optional*):
223
+ Custom timesteps used to support arbitrary spacing between timesteps. If `None`, then the default
224
+ timestep spacing strategy of equal spacing between timesteps is used. If `timesteps` is passed,
225
+ `num_inference_steps` must be `None`.
226
+
227
+ """
228
+ if num_inference_steps is not None and timesteps is not None:
229
+ raise ValueError("Can only pass one of `num_inference_steps` or `custom_timesteps`.")
230
+
231
+ if timesteps is not None:
232
+ for i in range(1, len(timesteps)):
233
+ if timesteps[i] >= timesteps[i - 1]:
234
+ raise ValueError("`custom_timesteps` must be in descending order.")
235
+
236
+ if timesteps[0] >= self.config.num_train_timesteps:
237
+ raise ValueError(
238
+ f"`timesteps` must start before `self.config.train_timesteps`:"
239
+ f" {self.config.num_train_timesteps}."
240
+ )
241
+
242
+ timesteps = np.array(timesteps, dtype=np.int64)
243
+ self.custom_timesteps = True
244
+ else:
245
+ if num_inference_steps > self.config.num_train_timesteps:
246
+ raise ValueError(
247
+ f"`num_inference_steps`: {num_inference_steps} cannot be larger than `self.config.train_timesteps`:"
248
+ f" {self.config.num_train_timesteps} as the unet model trained with this scheduler can only handle"
249
+ f" maximal {self.config.num_train_timesteps} timesteps."
250
+ )
251
+
252
+ self.num_inference_steps = num_inference_steps
253
+ self.custom_timesteps = False
254
+
255
+ # "linspace", "leading", "trailing" corresponds to annotation of Table 2. of https://arxiv.org/abs/2305.08891
256
+ if self.config.timestep_spacing == "linspace":
257
+ timesteps = (
258
+ np.linspace(0, self.config.num_train_timesteps - 1, num_inference_steps)
259
+ .round()[::-1]
260
+ .copy()
261
+ .astype(np.int64)
262
+ )
263
+ elif self.config.timestep_spacing == "leading":
264
+ step_ratio = self.config.num_train_timesteps // self.num_inference_steps
265
+ # creates integer timesteps by multiplying by ratio
266
+ # casting to int to avoid issues when num_inference_step is power of 3
267
+ timesteps = (np.arange(0, num_inference_steps) * step_ratio).round()[::-1].copy().astype(np.int64)
268
+ timesteps += self.config.steps_offset
269
+ elif self.config.timestep_spacing == "trailing":
270
+ step_ratio = self.config.num_train_timesteps / self.num_inference_steps
271
+ # creates integer timesteps by multiplying by ratio
272
+ # casting to int to avoid issues when num_inference_step is power of 3
273
+ timesteps = np.round(np.arange(self.config.num_train_timesteps, 0, -step_ratio)).astype(np.int64)
274
+ timesteps -= 1
275
+ else:
276
+ raise ValueError(
277
+ f"{self.config.timestep_spacing} is not supported. Please make sure to choose one of 'linspace', 'leading' or 'trailing'."
278
+ )
279
+
280
+ self.timesteps = torch.from_numpy(timesteps).to(device)
281
+
282
+ def _get_variance(self, t, predicted_variance=None, variance_type=None):
283
+ prev_t = self.previous_timestep(t)
284
+
285
+ alpha_prod_t = self.alphas_cumprod[t]
286
+ alpha_prod_t_prev = self.alphas_cumprod[prev_t] if prev_t >= 0 else self.one
287
+ current_beta_t = 1 - alpha_prod_t / alpha_prod_t_prev
288
+
289
+ # For t > 0, compute predicted variance βt (see formula (6) and (7) from https://arxiv.org/pdf/2006.11239.pdf)
290
+ # and sample from it to get previous sample
291
+ # x_{t-1} ~ N(pred_prev_sample, variance) == add variance to pred_sample
292
+ variance = (1 - alpha_prod_t_prev) / (1 - alpha_prod_t) * current_beta_t
293
+
294
+ # we always take the log of variance, so clamp it to ensure it's not 0
295
+ variance = torch.clamp(variance, min=1e-20)
296
+
297
+ if variance_type is None:
298
+ variance_type = self.config.variance_type
299
+
300
+ # hacks - were probably added for training stability
301
+ if variance_type == "fixed_small":
302
+ variance = variance
303
+ # for rl-diffuser https://arxiv.org/abs/2205.09991
304
+ elif variance_type == "fixed_small_log":
305
+ variance = torch.log(variance)
306
+ variance = torch.exp(0.5 * variance)
307
+ elif variance_type == "fixed_large":
308
+ variance = current_beta_t
309
+ elif variance_type == "fixed_large_log":
310
+ # Glide max_log
311
+ variance = torch.log(current_beta_t)
312
+ elif variance_type == "learned":
313
+ return predicted_variance
314
+ elif variance_type == "learned_range":
315
+ min_log = torch.log(variance)
316
+ max_log = torch.log(current_beta_t)
317
+ frac = (predicted_variance + 1) / 2
318
+ variance = frac * max_log + (1 - frac) * min_log
319
+
320
+ return variance
321
+
322
+ def _threshold_sample(self, sample: torch.FloatTensor) -> torch.FloatTensor:
323
+ """
324
+ "Dynamic thresholding: At each sampling step we set s to a certain percentile absolute pixel value in xt0 (the
325
+ prediction of x_0 at timestep t), and if s > 1, then we threshold xt0 to the range [-s, s] and then divide by
326
+ s. Dynamic thresholding pushes saturated pixels (those near -1 and 1) inwards, thereby actively preventing
327
+ pixels from saturation at each step. We find that dynamic thresholding results in significantly better
328
+ photorealism as well as better image-text alignment, especially when using very large guidance weights."
329
+
330
+ https://arxiv.org/abs/2205.11487
331
+ """
332
+ dtype = sample.dtype
333
+ batch_size, channels, *remaining_dims = sample.shape
334
+
335
+ if dtype not in (torch.float32, torch.float64):
336
+ sample = sample.float() # upcast for quantile calculation, and clamp not implemented for cpu half
337
+
338
+ # Flatten sample for doing quantile calculation along each image
339
+ sample = sample.reshape(batch_size, channels * np.prod(remaining_dims))
340
+
341
+ abs_sample = sample.abs() # "a certain percentile absolute pixel value"
342
+
343
+ s = torch.quantile(abs_sample, self.config.dynamic_thresholding_ratio, dim=1)
344
+ s = torch.clamp(
345
+ s, min=1, max=self.config.sample_max_value
346
+ ) # When clamped to min=1, equivalent to standard clipping to [-1, 1]
347
+ s = s.unsqueeze(1) # (batch_size, 1) because clamp will broadcast along dim=0
348
+ sample = torch.clamp(sample, -s, s) / s # "we threshold xt0 to the range [-s, s] and then divide by s"
349
+
350
+ sample = sample.reshape(batch_size, channels, *remaining_dims)
351
+ sample = sample.to(dtype)
352
+
353
+ return sample
354
+
355
+ def step(
356
+ self,
357
+ model_output: torch.FloatTensor,
358
+ timestep: int,
359
+ sample: torch.FloatTensor,
360
+ generator=None,
361
+ return_dict: bool = True,
362
+ ) -> Union[MySchedulerOutput, Tuple]:
363
+ """
364
+ Predict the sample from the previous timestep by reversing the SDE. This function propagates the diffusion
365
+ process from the learned model outputs (most often the predicted noise).
366
+
367
+ Args:
368
+ model_output (`torch.FloatTensor`):
369
+ The direct output from learned diffusion model.
370
+ timestep (`float`):
371
+ The current discrete timestep in the diffusion chain.
372
+ sample (`torch.FloatTensor`):
373
+ A current instance of a sample created by the diffusion process.
374
+ generator (`torch.Generator`, *optional*):
375
+ A random number generator.
376
+ return_dict (`bool`, *optional*, defaults to `True`):
377
+ Whether or not to return a [`~schedulers.scheduling_ddpm.MySchedulerOutput`] or `tuple`.
378
+
379
+ Returns:
380
+ [`~schedulers.scheduling_ddpm.MySchedulerOutput`] or `tuple`:
381
+ If return_dict is `True`, [`~schedulers.scheduling_ddpm.MySchedulerOutput`] is returned, otherwise a
382
+ tuple is returned where the first element is the sample tensor.
383
+
384
+ """
385
+ t = timestep
386
+
387
+ prev_t = self.previous_timestep(t)
388
+
389
+ if model_output.shape[1] == sample.shape[1] * 2 and self.variance_type in ["learned", "learned_range"]:
390
+ model_output, predicted_variance = torch.split(model_output, sample.shape[1], dim=1)
391
+ else:
392
+ predicted_variance = None
393
+
394
+ # 1. compute alphas, betas
395
+ alpha_prod_t = self.alphas_cumprod[t]
396
+ alpha_prod_t_prev = self.alphas_cumprod[prev_t] if prev_t >= 0 else self.one
397
+ beta_prod_t = 1 - alpha_prod_t
398
+ beta_prod_t_prev = 1 - alpha_prod_t_prev
399
+ current_alpha_t = alpha_prod_t / alpha_prod_t_prev
400
+ current_beta_t = 1 - current_alpha_t
401
+
402
+ # 2. compute predicted original sample from predicted noise also called
403
+ # "predicted x_0" of formula (15) from https://arxiv.org/pdf/2006.11239.pdf
404
+ if self.config.prediction_type == "epsilon":
405
+ pred_original_sample = (sample - beta_prod_t ** (0.5) * model_output) / alpha_prod_t ** (0.5)
406
+ elif self.config.prediction_type == "sample":
407
+ pred_original_sample = model_output
408
+ elif self.config.prediction_type == "v_prediction":
409
+ pred_original_sample = (alpha_prod_t**0.5) * sample - (beta_prod_t**0.5) * model_output
410
+ else:
411
+ raise ValueError(
412
+ f"prediction_type given as {self.config.prediction_type} must be one of `epsilon`, `sample` or"
413
+ " `v_prediction` for the MyScheduler."
414
+ )
415
+
416
+ # 3. Clip or threshold "predicted x_0"
417
+ if self.config.thresholding:
418
+ pred_original_sample = self._threshold_sample(pred_original_sample)
419
+ elif self.config.clip_sample:
420
+ pred_original_sample = pred_original_sample.clamp(
421
+ -self.config.clip_sample_range, self.config.clip_sample_range
422
+ )
423
+
424
+ # 4. Compute coefficients for pred_original_sample x_0 and current sample x_t
425
+ # See formula (7) from https://arxiv.org/pdf/2006.11239.pdf
426
+ pred_original_sample_coeff = (alpha_prod_t_prev ** (0.5) * current_beta_t) / beta_prod_t
427
+ current_sample_coeff = current_alpha_t ** (0.5) * beta_prod_t_prev / beta_prod_t
428
+
429
+ # 5. Compute predicted previous sample µ_t
430
+ # See formula (7) from https://arxiv.org/pdf/2006.11239.pdf
431
+ pred_prev_sample = pred_original_sample_coeff * pred_original_sample + current_sample_coeff * sample
432
+
433
+ # 6. Add noise
434
+ variance = 0
435
+ if t > 0:
436
+ device = model_output.device
437
+ variance_noise = randn_tensor(
438
+ model_output.shape, generator=generator, device=device, dtype=model_output.dtype
439
+ )
440
+ if self.variance_type == "fixed_small_log":
441
+ variance = self._get_variance(t, predicted_variance=predicted_variance) * variance_noise
442
+ elif self.variance_type == "learned_range":
443
+ variance = self._get_variance(t, predicted_variance=predicted_variance)
444
+ variance = torch.exp(0.5 * variance) * variance_noise
445
+ else:
446
+ variance = (self._get_variance(t, predicted_variance=predicted_variance) ** 0.5) * variance_noise
447
+
448
+ pred_prev_sample = pred_prev_sample + variance
449
+
450
+ if not return_dict:
451
+ return (pred_prev_sample,)
452
+
453
+ return MySchedulerOutput(prev_sample=pred_prev_sample, pred_original_sample=pred_original_sample)
454
+
455
+ def add_noise(
456
+ self,
457
+ original_samples: torch.FloatTensor,
458
+ noise: torch.FloatTensor,
459
+ timesteps: torch.IntTensor,
460
+ ) -> torch.FloatTensor:
461
+ # Make sure alphas_cumprod and timestep have same device and dtype as original_samples
462
+ alphas_cumprod = self.alphas_cumprod.to(device=original_samples.device, dtype=original_samples.dtype)
463
+ timesteps = timesteps.to(original_samples.device)
464
+
465
+ sqrt_alpha_prod = alphas_cumprod[timesteps] ** 0.5
466
+ sqrt_alpha_prod = sqrt_alpha_prod.flatten()
467
+ while len(sqrt_alpha_prod.shape) < len(original_samples.shape):
468
+ sqrt_alpha_prod = sqrt_alpha_prod.unsqueeze(-1)
469
+
470
+ sqrt_one_minus_alpha_prod = (1 - alphas_cumprod[timesteps]) ** 0.5
471
+ sqrt_one_minus_alpha_prod = sqrt_one_minus_alpha_prod.flatten()
472
+ while len(sqrt_one_minus_alpha_prod.shape) < len(original_samples.shape):
473
+ sqrt_one_minus_alpha_prod = sqrt_one_minus_alpha_prod.unsqueeze(-1)
474
+
475
+ noisy_samples = sqrt_alpha_prod * original_samples + sqrt_one_minus_alpha_prod * noise
476
+ return noisy_samples
477
+
478
+ def get_velocity(
479
+ self, sample: torch.FloatTensor, noise: torch.FloatTensor, timesteps: torch.IntTensor
480
+ ) -> torch.FloatTensor:
481
+ # Make sure alphas_cumprod and timestep have same device and dtype as sample
482
+ alphas_cumprod = self.alphas_cumprod.to(device=sample.device, dtype=sample.dtype)
483
+ timesteps = timesteps.to(sample.device)
484
+
485
+ sqrt_alpha_prod = alphas_cumprod[timesteps] ** 0.5
486
+ sqrt_alpha_prod = sqrt_alpha_prod.flatten()
487
+ while len(sqrt_alpha_prod.shape) < len(sample.shape):
488
+ sqrt_alpha_prod = sqrt_alpha_prod.unsqueeze(-1)
489
+
490
+ sqrt_one_minus_alpha_prod = (1 - alphas_cumprod[timesteps]) ** 0.5
491
+ sqrt_one_minus_alpha_prod = sqrt_one_minus_alpha_prod.flatten()
492
+ while len(sqrt_one_minus_alpha_prod.shape) < len(sample.shape):
493
+ sqrt_one_minus_alpha_prod = sqrt_one_minus_alpha_prod.unsqueeze(-1)
494
+
495
+ velocity = sqrt_alpha_prod * noise - sqrt_one_minus_alpha_prod * sample
496
+ return velocity
497
+
498
+ def __len__(self):
499
+ return self.config.num_train_timesteps
500
+
501
+ def previous_timestep(self, timestep):
502
+ if self.custom_timesteps:
503
+ index = (self.timesteps == timestep).nonzero(as_tuple=True)[0][0]
504
+ if index == self.timesteps.shape[0] - 1:
505
+ prev_t = torch.tensor(-1)
506
+ else:
507
+ prev_t = self.timesteps[index + 1]
508
+ else:
509
+ num_inference_steps = (
510
+ self.num_inference_steps if self.num_inference_steps else self.config.num_train_timesteps
511
+ )
512
+ prev_t = timestep - self.config.num_train_timesteps // num_inference_steps
513
+
514
+ return prev_t