hieudinhpro commited on
Commit
c712915
1 Parent(s): 22dfa47

Update README.md

Browse files
Files changed (1) hide show
  1. README.md +31 -10
README.md CHANGED
@@ -9,7 +9,7 @@ model-index:
9
  language:
10
  - en
11
  library_name: transformers
12
- pipeline_tag: image-to-text
13
  ---
14
 
15
  <!-- This model card has been generated automatically according to the information the Trainer had access to. You
@@ -17,21 +17,44 @@ should probably proofread and complete it, then remove this comment. -->
17
 
18
  # git-base-on-diffuision-dataset2
19
 
20
- This model is a fine-tuned version of [microsoft/git-base](https://huggingface.co/microsoft/git-base) on an unknown dataset.
21
 
22
  ## Model description
23
 
24
- More information needed
25
 
26
- ## Intended uses & limitations
27
 
28
- More information needed
29
 
30
- ## Training and evaluation data
31
 
32
- More information needed
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
33
 
34
- ## Training procedure
35
 
36
  ### Training hyperparameters
37
 
@@ -46,8 +69,6 @@ The following hyperparameters were used during training:
46
  - lr_scheduler_type: linear
47
  - num_epochs: 1
48
 
49
- ### Training results
50
-
51
 
52
 
53
  ### Framework versions
 
9
  language:
10
  - en
11
  library_name: transformers
12
+ pipeline_tag: text-generation
13
  ---
14
 
15
  <!-- This model card has been generated automatically according to the information the Trainer had access to. You
 
17
 
18
  # git-base-on-diffuision-dataset2
19
 
20
+ This model is a fine-tuned version of [microsoft/git-base](https://huggingface.co/microsoft/git-base) on hieudinhpro/diffuision-dataset2 dataset.
21
 
22
  ## Model description
23
 
 
24
 
 
25
 
26
+ ## How to use mdoel
27
 
 
28
 
29
+ ```
30
+ # Load model directly
31
+ from transformers import AutoProcessor, AutoModelForCausalLM
32
+
33
+ processor = AutoProcessor.from_pretrained("microsoft/git-base")
34
+ model = AutoModelForCausalLM.from_pretrained("hieudinhpro/git-base-on-diffuision-dataset2")
35
+
36
+ ```
37
+
38
+ ```
39
+ # load image
40
+ from PIL import Image
41
+
42
+ image = Image.open('/content/image_3.jpg')
43
+ ```
44
+ ```
45
+ # pre image
46
+ inputs = processor(images=image, return_tensors="pt")
47
+ pixel_values = inputs.pixel_values
48
+
49
+ # predict
50
+ generated_ids = model.generate(pixel_values=pixel_values, max_length=50)
51
+
52
+ # decode to text
53
+ generated_caption = processor.batch_decode(generated_ids, skip_special_tokens=True)[0]
54
+ print(generated_caption)
55
+ ```
56
+
57
 
 
58
 
59
  ### Training hyperparameters
60
 
 
69
  - lr_scheduler_type: linear
70
  - num_epochs: 1
71
 
 
 
72
 
73
 
74
  ### Framework versions