hiiamsid commited on
Commit
ba8e3af
1 Parent(s): e44e6de

update model card README.md

Browse files
Files changed (1) hide show
  1. README.md +87 -0
README.md ADDED
@@ -0,0 +1,87 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ license: apache-2.0
3
+ base_model: facebook/hubert-base-ls960
4
+ tags:
5
+ - generated_from_trainer
6
+ datasets:
7
+ - marsyas/gtzan
8
+ metrics:
9
+ - accuracy
10
+ model-index:
11
+ - name: hubert-base-ls960-finetuned-gtzan
12
+ results:
13
+ - task:
14
+ name: Audio Classification
15
+ type: audio-classification
16
+ dataset:
17
+ name: GTZAN
18
+ type: marsyas/gtzan
19
+ config: all
20
+ split: train
21
+ args: all
22
+ metrics:
23
+ - name: Accuracy
24
+ type: accuracy
25
+ value: 0.82
26
+ ---
27
+
28
+ <!-- This model card has been generated automatically according to the information the Trainer had access to. You
29
+ should probably proofread and complete it, then remove this comment. -->
30
+
31
+ # hubert-base-ls960-finetuned-gtzan
32
+
33
+ This model is a fine-tuned version of [facebook/hubert-base-ls960](https://huggingface.co/facebook/hubert-base-ls960) on the GTZAN dataset.
34
+ It achieves the following results on the evaluation set:
35
+ - Loss: 0.5845
36
+ - Accuracy: 0.82
37
+
38
+ ## Model description
39
+
40
+ More information needed
41
+
42
+ ## Intended uses & limitations
43
+
44
+ More information needed
45
+
46
+ ## Training and evaluation data
47
+
48
+ More information needed
49
+
50
+ ## Training procedure
51
+
52
+ ### Training hyperparameters
53
+
54
+ The following hyperparameters were used during training:
55
+ - learning_rate: 5e-05
56
+ - train_batch_size: 1
57
+ - eval_batch_size: 1
58
+ - seed: 42
59
+ - gradient_accumulation_steps: 10
60
+ - total_train_batch_size: 10
61
+ - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
62
+ - lr_scheduler_type: linear
63
+ - lr_scheduler_warmup_ratio: 0.1
64
+ - num_epochs: 10
65
+
66
+ ### Training results
67
+
68
+ | Training Loss | Epoch | Step | Validation Loss | Accuracy |
69
+ |:-------------:|:-----:|:----:|:---------------:|:--------:|
70
+ | 2.0942 | 0.99 | 89 | 2.0216 | 0.33 |
71
+ | 1.713 | 1.99 | 179 | 1.5801 | 0.43 |
72
+ | 1.3519 | 2.99 | 269 | 1.2871 | 0.62 |
73
+ | 1.182 | 3.99 | 359 | 1.1647 | 0.65 |
74
+ | 1.0645 | 4.99 | 449 | 0.9332 | 0.71 |
75
+ | 0.8777 | 6.0 | 539 | 0.8251 | 0.77 |
76
+ | 0.7 | 7.0 | 629 | 0.8725 | 0.77 |
77
+ | 0.4387 | 8.0 | 719 | 0.8215 | 0.77 |
78
+ | 0.567 | 9.0 | 809 | 0.5571 | 0.85 |
79
+ | 0.5342 | 9.9 | 890 | 0.5845 | 0.82 |
80
+
81
+
82
+ ### Framework versions
83
+
84
+ - Transformers 4.31.0
85
+ - Pytorch 1.13.1
86
+ - Datasets 2.13.1
87
+ - Tokenizers 0.13.3