diff --git "a/trainer_log.jsonl" "b/trainer_log.jsonl" --- "a/trainer_log.jsonl" +++ "b/trainer_log.jsonl" @@ -2506,3 +2506,503 @@ {"current_steps": 2506, "total_steps": 3226, "loss": 0.71, "learning_rate": 4.812027185913657e-06, "epoch": 0.7767832926498508, "percentage": 77.68, "elapsed_time": "12:47:23", "remaining_time": "3:40:28"} {"current_steps": 2507, "total_steps": 3226, "loss": 0.7202, "learning_rate": 4.799231528538475e-06, "epoch": 0.7770932620403735, "percentage": 77.71, "elapsed_time": "12:47:42", "remaining_time": "3:40:10"} {"current_steps": 2508, "total_steps": 3226, "loss": 0.7148, "learning_rate": 4.786450586405589e-06, "epoch": 0.7774032314308962, "percentage": 77.74, "elapsed_time": "12:48:00", "remaining_time": "3:39:52"} +{"current_steps": 2509, "total_steps": 3226, "loss": 0.6953, "learning_rate": 4.773684371887706e-06, "epoch": 0.7777132008214189, "percentage": 77.77, "elapsed_time": "12:48:19", "remaining_time": "3:39:33"} +{"current_steps": 2510, "total_steps": 3226, "loss": 0.6829, "learning_rate": 4.760932897343278e-06, "epoch": 0.7780231702119416, "percentage": 77.81, "elapsed_time": "12:48:37", "remaining_time": "3:39:15"} +{"current_steps": 2511, "total_steps": 3226, "loss": 0.6981, "learning_rate": 4.748196175116484e-06, "epoch": 0.7783331396024643, "percentage": 77.84, "elapsed_time": "12:48:55", "remaining_time": "3:38:57"} +{"current_steps": 2512, "total_steps": 3226, "loss": 0.7068, "learning_rate": 4.735474217537224e-06, "epoch": 0.7786431089929869, "percentage": 77.87, "elapsed_time": "12:49:14", "remaining_time": "3:38:38"} +{"current_steps": 2513, "total_steps": 3226, "loss": 0.7246, "learning_rate": 4.722767036921105e-06, "epoch": 0.7789530783835096, "percentage": 77.9, "elapsed_time": "12:49:32", "remaining_time": "3:38:20"} +{"current_steps": 2514, "total_steps": 3226, "loss": 0.7154, "learning_rate": 4.710074645569429e-06, "epoch": 0.7792630477740323, "percentage": 77.93, "elapsed_time": "12:49:50", "remaining_time": "3:38:01"} +{"current_steps": 2515, "total_steps": 3226, "loss": 0.7004, "learning_rate": 4.6973970557691814e-06, "epoch": 0.779573017164555, "percentage": 77.96, "elapsed_time": "12:50:08", "remaining_time": "3:37:43"} +{"current_steps": 2516, "total_steps": 3226, "loss": 0.7088, "learning_rate": 4.68473427979302e-06, "epoch": 0.7798829865550777, "percentage": 77.99, "elapsed_time": "12:50:27", "remaining_time": "3:37:25"} +{"current_steps": 2517, "total_steps": 3226, "loss": 0.6956, "learning_rate": 4.67208632989925e-06, "epoch": 0.7801929559456003, "percentage": 78.02, "elapsed_time": "12:50:45", "remaining_time": "3:37:06"} +{"current_steps": 2518, "total_steps": 3226, "loss": 0.7082, "learning_rate": 4.659453218331858e-06, "epoch": 0.7805029253361231, "percentage": 78.05, "elapsed_time": "12:51:03", "remaining_time": "3:36:48"} +{"current_steps": 2519, "total_steps": 3226, "loss": 0.6748, "learning_rate": 4.646834957320419e-06, "epoch": 0.7808128947266457, "percentage": 78.08, "elapsed_time": "12:51:22", "remaining_time": "3:36:29"} +{"current_steps": 2520, "total_steps": 3226, "loss": 0.7351, "learning_rate": 4.634231559080164e-06, "epoch": 0.7811228641171685, "percentage": 78.12, "elapsed_time": "12:51:40", "remaining_time": "3:36:11"} +{"current_steps": 2521, "total_steps": 3226, "loss": 0.6966, "learning_rate": 4.621643035811929e-06, "epoch": 0.7814328335076911, "percentage": 78.15, "elapsed_time": "12:51:58", "remaining_time": "3:35:53"} +{"current_steps": 2522, "total_steps": 3226, "loss": 0.7189, "learning_rate": 4.60906939970214e-06, "epoch": 0.7817428028982139, "percentage": 78.18, "elapsed_time": "12:52:17", "remaining_time": "3:35:34"} +{"current_steps": 2523, "total_steps": 3226, "loss": 0.7293, "learning_rate": 4.59651066292284e-06, "epoch": 0.7820527722887365, "percentage": 78.21, "elapsed_time": "12:52:35", "remaining_time": "3:35:16"} +{"current_steps": 2524, "total_steps": 3226, "loss": 0.7077, "learning_rate": 4.5839668376316015e-06, "epoch": 0.7823627416792591, "percentage": 78.24, "elapsed_time": "12:52:53", "remaining_time": "3:34:57"} +{"current_steps": 2525, "total_steps": 3226, "loss": 0.6887, "learning_rate": 4.571437935971616e-06, "epoch": 0.7826727110697819, "percentage": 78.27, "elapsed_time": "12:53:12", "remaining_time": "3:34:39"} +{"current_steps": 2526, "total_steps": 3226, "loss": 0.6834, "learning_rate": 4.558923970071576e-06, "epoch": 0.7829826804603045, "percentage": 78.3, "elapsed_time": "12:53:30", "remaining_time": "3:34:21"} +{"current_steps": 2527, "total_steps": 3226, "loss": 0.7467, "learning_rate": 4.546424952045756e-06, "epoch": 0.7832926498508272, "percentage": 78.33, "elapsed_time": "12:53:48", "remaining_time": "3:34:02"} +{"current_steps": 2528, "total_steps": 3226, "loss": 0.7056, "learning_rate": 4.5339408939939465e-06, "epoch": 0.7836026192413499, "percentage": 78.36, "elapsed_time": "12:54:07", "remaining_time": "3:33:44"} +{"current_steps": 2529, "total_steps": 3226, "loss": 0.7324, "learning_rate": 4.521471808001437e-06, "epoch": 0.7839125886318726, "percentage": 78.39, "elapsed_time": "12:54:25", "remaining_time": "3:33:26"} +{"current_steps": 2530, "total_steps": 3226, "loss": 0.6812, "learning_rate": 4.5090177061390515e-06, "epoch": 0.7842225580223953, "percentage": 78.43, "elapsed_time": "12:54:43", "remaining_time": "3:33:07"} +{"current_steps": 2531, "total_steps": 3226, "loss": 0.6982, "learning_rate": 4.496578600463097e-06, "epoch": 0.784532527412918, "percentage": 78.46, "elapsed_time": "12:55:02", "remaining_time": "3:32:49"} +{"current_steps": 2532, "total_steps": 3226, "loss": 0.6958, "learning_rate": 4.484154503015361e-06, "epoch": 0.7848424968034406, "percentage": 78.49, "elapsed_time": "12:55:20", "remaining_time": "3:32:30"} +{"current_steps": 2533, "total_steps": 3226, "loss": 0.7337, "learning_rate": 4.4717454258231015e-06, "epoch": 0.7851524661939634, "percentage": 78.52, "elapsed_time": "12:55:38", "remaining_time": "3:32:12"} +{"current_steps": 2534, "total_steps": 3226, "loss": 0.6849, "learning_rate": 4.4593513808990444e-06, "epoch": 0.785462435584486, "percentage": 78.55, "elapsed_time": "12:55:57", "remaining_time": "3:31:54"} +{"current_steps": 2535, "total_steps": 3226, "loss": 0.7318, "learning_rate": 4.446972380241352e-06, "epoch": 0.7857724049750087, "percentage": 78.58, "elapsed_time": "12:56:15", "remaining_time": "3:31:35"} +{"current_steps": 2536, "total_steps": 3226, "loss": 0.733, "learning_rate": 4.434608435833631e-06, "epoch": 0.7860823743655314, "percentage": 78.61, "elapsed_time": "12:56:33", "remaining_time": "3:31:17"} +{"current_steps": 2537, "total_steps": 3226, "loss": 0.7172, "learning_rate": 4.42225955964491e-06, "epoch": 0.786392343756054, "percentage": 78.64, "elapsed_time": "12:56:52", "remaining_time": "3:30:58"} +{"current_steps": 2538, "total_steps": 3226, "loss": 0.729, "learning_rate": 4.409925763629632e-06, "epoch": 0.7867023131465768, "percentage": 78.67, "elapsed_time": "12:57:10", "remaining_time": "3:30:40"} +{"current_steps": 2539, "total_steps": 3226, "loss": 0.7125, "learning_rate": 4.39760705972764e-06, "epoch": 0.7870122825370994, "percentage": 78.7, "elapsed_time": "12:57:28", "remaining_time": "3:30:22"} +{"current_steps": 2540, "total_steps": 3226, "loss": 0.6896, "learning_rate": 4.385303459864165e-06, "epoch": 0.7873222519276222, "percentage": 78.74, "elapsed_time": "12:57:47", "remaining_time": "3:30:03"} +{"current_steps": 2541, "total_steps": 3226, "loss": 0.7164, "learning_rate": 4.373014975949823e-06, "epoch": 0.7876322213181448, "percentage": 78.77, "elapsed_time": "12:58:05", "remaining_time": "3:29:45"} +{"current_steps": 2542, "total_steps": 3226, "loss": 0.7195, "learning_rate": 4.360741619880591e-06, "epoch": 0.7879421907086676, "percentage": 78.8, "elapsed_time": "12:58:23", "remaining_time": "3:29:27"} +{"current_steps": 2543, "total_steps": 3226, "loss": 0.6741, "learning_rate": 4.348483403537796e-06, "epoch": 0.7882521600991902, "percentage": 78.83, "elapsed_time": "12:58:42", "remaining_time": "3:29:08"} +{"current_steps": 2544, "total_steps": 3226, "loss": 0.7064, "learning_rate": 4.336240338788133e-06, "epoch": 0.7885621294897129, "percentage": 78.86, "elapsed_time": "12:59:00", "remaining_time": "3:28:50"} +{"current_steps": 2545, "total_steps": 3226, "loss": 0.7145, "learning_rate": 4.324012437483591e-06, "epoch": 0.7888720988802356, "percentage": 78.89, "elapsed_time": "12:59:18", "remaining_time": "3:28:31"} +{"current_steps": 2546, "total_steps": 3226, "loss": 0.7332, "learning_rate": 4.3117997114615265e-06, "epoch": 0.7891820682707582, "percentage": 78.92, "elapsed_time": "12:59:37", "remaining_time": "3:28:13"} +{"current_steps": 2547, "total_steps": 3226, "loss": 0.7092, "learning_rate": 4.299602172544557e-06, "epoch": 0.789492037661281, "percentage": 78.95, "elapsed_time": "12:59:55", "remaining_time": "3:27:55"} +{"current_steps": 2548, "total_steps": 3226, "loss": 0.7251, "learning_rate": 4.2874198325406245e-06, "epoch": 0.7898020070518036, "percentage": 78.98, "elapsed_time": "13:00:14", "remaining_time": "3:27:36"} +{"current_steps": 2549, "total_steps": 3226, "loss": 0.7489, "learning_rate": 4.275252703242971e-06, "epoch": 0.7901119764423263, "percentage": 79.01, "elapsed_time": "13:00:32", "remaining_time": "3:27:18"} +{"current_steps": 2550, "total_steps": 3226, "loss": 0.6907, "learning_rate": 4.263100796430075e-06, "epoch": 0.790421945832849, "percentage": 79.05, "elapsed_time": "13:00:50", "remaining_time": "3:27:00"} +{"current_steps": 2551, "total_steps": 3226, "loss": 0.6893, "learning_rate": 4.250964123865722e-06, "epoch": 0.7907319152233717, "percentage": 79.08, "elapsed_time": "13:01:08", "remaining_time": "3:26:41"} +{"current_steps": 2552, "total_steps": 3226, "loss": 0.7145, "learning_rate": 4.238842697298906e-06, "epoch": 0.7910418846138944, "percentage": 79.11, "elapsed_time": "13:01:27", "remaining_time": "3:26:23"} +{"current_steps": 2553, "total_steps": 3226, "loss": 0.6897, "learning_rate": 4.2267365284639e-06, "epoch": 0.7913518540044171, "percentage": 79.14, "elapsed_time": "13:01:45", "remaining_time": "3:26:04"} +{"current_steps": 2554, "total_steps": 3226, "loss": 0.6921, "learning_rate": 4.214645629080192e-06, "epoch": 0.7916618233949397, "percentage": 79.17, "elapsed_time": "13:02:03", "remaining_time": "3:25:46"} +{"current_steps": 2555, "total_steps": 3226, "loss": 0.7356, "learning_rate": 4.202570010852471e-06, "epoch": 0.7919717927854625, "percentage": 79.2, "elapsed_time": "13:02:22", "remaining_time": "3:25:28"} +{"current_steps": 2556, "total_steps": 3226, "loss": 0.7086, "learning_rate": 4.190509685470665e-06, "epoch": 0.7922817621759851, "percentage": 79.23, "elapsed_time": "13:02:40", "remaining_time": "3:25:09"} +{"current_steps": 2557, "total_steps": 3226, "loss": 0.6802, "learning_rate": 4.178464664609878e-06, "epoch": 0.7925917315665079, "percentage": 79.26, "elapsed_time": "13:02:58", "remaining_time": "3:24:51"} +{"current_steps": 2558, "total_steps": 3226, "loss": 0.7089, "learning_rate": 4.166434959930399e-06, "epoch": 0.7929017009570305, "percentage": 79.29, "elapsed_time": "13:03:17", "remaining_time": "3:24:32"} +{"current_steps": 2559, "total_steps": 3226, "loss": 0.7154, "learning_rate": 4.154420583077696e-06, "epoch": 0.7932116703475531, "percentage": 79.32, "elapsed_time": "13:03:35", "remaining_time": "3:24:14"} +{"current_steps": 2560, "total_steps": 3226, "loss": 0.707, "learning_rate": 4.1424215456823935e-06, "epoch": 0.7935216397380759, "percentage": 79.36, "elapsed_time": "13:03:53", "remaining_time": "3:23:56"} +{"current_steps": 2561, "total_steps": 3226, "loss": 0.7017, "learning_rate": 4.13043785936027e-06, "epoch": 0.7938316091285985, "percentage": 79.39, "elapsed_time": "13:04:12", "remaining_time": "3:23:37"} +{"current_steps": 2562, "total_steps": 3226, "loss": 0.7214, "learning_rate": 4.118469535712244e-06, "epoch": 0.7941415785191213, "percentage": 79.42, "elapsed_time": "13:04:30", "remaining_time": "3:23:19"} +{"current_steps": 2563, "total_steps": 3226, "loss": 0.6983, "learning_rate": 4.106516586324356e-06, "epoch": 0.7944515479096439, "percentage": 79.45, "elapsed_time": "13:04:49", "remaining_time": "3:23:01"} +{"current_steps": 2564, "total_steps": 3226, "loss": 0.7068, "learning_rate": 4.09457902276777e-06, "epoch": 0.7947615173001666, "percentage": 79.48, "elapsed_time": "13:05:07", "remaining_time": "3:22:42"} +{"current_steps": 2565, "total_steps": 3226, "loss": 0.7089, "learning_rate": 4.082656856598754e-06, "epoch": 0.7950714866906893, "percentage": 79.51, "elapsed_time": "13:05:25", "remaining_time": "3:22:24"} +{"current_steps": 2566, "total_steps": 3226, "loss": 0.705, "learning_rate": 4.070750099358669e-06, "epoch": 0.795381456081212, "percentage": 79.54, "elapsed_time": "13:05:44", "remaining_time": "3:22:05"} +{"current_steps": 2567, "total_steps": 3226, "loss": 0.6967, "learning_rate": 4.058858762573958e-06, "epoch": 0.7956914254717347, "percentage": 79.57, "elapsed_time": "13:06:02", "remaining_time": "3:21:47"} +{"current_steps": 2568, "total_steps": 3226, "loss": 0.6844, "learning_rate": 4.046982857756139e-06, "epoch": 0.7960013948622574, "percentage": 79.6, "elapsed_time": "13:06:20", "remaining_time": "3:21:29"} +{"current_steps": 2569, "total_steps": 3226, "loss": 0.7271, "learning_rate": 4.035122396401789e-06, "epoch": 0.79631136425278, "percentage": 79.63, "elapsed_time": "13:06:39", "remaining_time": "3:21:10"} +{"current_steps": 2570, "total_steps": 3226, "loss": 0.718, "learning_rate": 4.023277389992539e-06, "epoch": 0.7966213336433027, "percentage": 79.67, "elapsed_time": "13:06:57", "remaining_time": "3:20:52"} +{"current_steps": 2571, "total_steps": 3226, "loss": 0.6941, "learning_rate": 4.011447849995045e-06, "epoch": 0.7969313030338254, "percentage": 79.7, "elapsed_time": "13:07:15", "remaining_time": "3:20:34"} +{"current_steps": 2572, "total_steps": 3226, "loss": 0.6929, "learning_rate": 3.999633787861019e-06, "epoch": 0.7972412724243481, "percentage": 79.73, "elapsed_time": "13:07:34", "remaining_time": "3:20:15"} +{"current_steps": 2573, "total_steps": 3226, "loss": 0.7011, "learning_rate": 3.9878352150271556e-06, "epoch": 0.7975512418148708, "percentage": 79.76, "elapsed_time": "13:07:52", "remaining_time": "3:19:57"} +{"current_steps": 2574, "total_steps": 3226, "loss": 0.7292, "learning_rate": 3.976052142915172e-06, "epoch": 0.7978612112053934, "percentage": 79.79, "elapsed_time": "13:08:10", "remaining_time": "3:19:38"} +{"current_steps": 2575, "total_steps": 3226, "loss": 0.6846, "learning_rate": 3.964284582931792e-06, "epoch": 0.7981711805959162, "percentage": 79.82, "elapsed_time": "13:08:29", "remaining_time": "3:19:20"} +{"current_steps": 2576, "total_steps": 3226, "loss": 0.735, "learning_rate": 3.952532546468688e-06, "epoch": 0.7984811499864388, "percentage": 79.85, "elapsed_time": "13:08:47", "remaining_time": "3:19:02"} +{"current_steps": 2577, "total_steps": 3226, "loss": 0.7035, "learning_rate": 3.940796044902548e-06, "epoch": 0.7987911193769616, "percentage": 79.88, "elapsed_time": "13:09:05", "remaining_time": "3:18:43"} +{"current_steps": 2578, "total_steps": 3226, "loss": 0.6948, "learning_rate": 3.9290750895949805e-06, "epoch": 0.7991010887674842, "percentage": 79.91, "elapsed_time": "13:09:24", "remaining_time": "3:18:25"} +{"current_steps": 2579, "total_steps": 3226, "loss": 0.692, "learning_rate": 3.917369691892574e-06, "epoch": 0.799411058158007, "percentage": 79.94, "elapsed_time": "13:09:42", "remaining_time": "3:18:06"} +{"current_steps": 2580, "total_steps": 3226, "loss": 0.7076, "learning_rate": 3.905679863126841e-06, "epoch": 0.7997210275485296, "percentage": 79.98, "elapsed_time": "13:10:00", "remaining_time": "3:17:48"} +{"current_steps": 2581, "total_steps": 3226, "loss": 0.7257, "learning_rate": 3.894005614614232e-06, "epoch": 0.8000309969390522, "percentage": 80.01, "elapsed_time": "13:10:19", "remaining_time": "3:17:30"} +{"current_steps": 2582, "total_steps": 3226, "loss": 0.7123, "learning_rate": 3.882346957656107e-06, "epoch": 0.800340966329575, "percentage": 80.04, "elapsed_time": "13:10:37", "remaining_time": "3:17:11"} +{"current_steps": 2583, "total_steps": 3226, "loss": 0.7177, "learning_rate": 3.870703903538724e-06, "epoch": 0.8006509357200976, "percentage": 80.07, "elapsed_time": "13:10:55", "remaining_time": "3:16:53"} +{"current_steps": 2584, "total_steps": 3226, "loss": 0.7158, "learning_rate": 3.859076463533265e-06, "epoch": 0.8009609051106203, "percentage": 80.1, "elapsed_time": "13:11:14", "remaining_time": "3:16:35"} +{"current_steps": 2585, "total_steps": 3226, "loss": 0.7308, "learning_rate": 3.847464648895769e-06, "epoch": 0.801270874501143, "percentage": 80.13, "elapsed_time": "13:11:32", "remaining_time": "3:16:16"} +{"current_steps": 2586, "total_steps": 3226, "loss": 0.7363, "learning_rate": 3.835868470867159e-06, "epoch": 0.8015808438916657, "percentage": 80.16, "elapsed_time": "13:11:50", "remaining_time": "3:15:58"} +{"current_steps": 2587, "total_steps": 3226, "loss": 0.7016, "learning_rate": 3.824287940673226e-06, "epoch": 0.8018908132821884, "percentage": 80.19, "elapsed_time": "13:12:09", "remaining_time": "3:15:39"} +{"current_steps": 2588, "total_steps": 3226, "loss": 0.6766, "learning_rate": 3.8127230695246044e-06, "epoch": 0.8022007826727111, "percentage": 80.22, "elapsed_time": "13:12:27", "remaining_time": "3:15:21"} +{"current_steps": 2589, "total_steps": 3226, "loss": 0.7233, "learning_rate": 3.8011738686167698e-06, "epoch": 0.8025107520632337, "percentage": 80.25, "elapsed_time": "13:12:45", "remaining_time": "3:15:03"} +{"current_steps": 2590, "total_steps": 3226, "loss": 0.7185, "learning_rate": 3.789640349130037e-06, "epoch": 0.8028207214537565, "percentage": 80.29, "elapsed_time": "13:13:04", "remaining_time": "3:14:44"} +{"current_steps": 2591, "total_steps": 3226, "loss": 0.6941, "learning_rate": 3.7781225222295324e-06, "epoch": 0.8031306908442791, "percentage": 80.32, "elapsed_time": "13:13:22", "remaining_time": "3:14:26"} +{"current_steps": 2592, "total_steps": 3226, "loss": 0.6756, "learning_rate": 3.766620399065193e-06, "epoch": 0.8034406602348018, "percentage": 80.35, "elapsed_time": "13:13:40", "remaining_time": "3:14:07"} +{"current_steps": 2593, "total_steps": 3226, "loss": 0.7247, "learning_rate": 3.755133990771751e-06, "epoch": 0.8037506296253245, "percentage": 80.38, "elapsed_time": "13:13:59", "remaining_time": "3:13:49"} +{"current_steps": 2594, "total_steps": 3226, "loss": 0.6829, "learning_rate": 3.7436633084687346e-06, "epoch": 0.8040605990158471, "percentage": 80.41, "elapsed_time": "13:14:17", "remaining_time": "3:13:31"} +{"current_steps": 2595, "total_steps": 3226, "loss": 0.6976, "learning_rate": 3.7322083632604368e-06, "epoch": 0.8043705684063699, "percentage": 80.44, "elapsed_time": "13:14:35", "remaining_time": "3:13:12"} +{"current_steps": 2596, "total_steps": 3226, "loss": 0.6891, "learning_rate": 3.7207691662359247e-06, "epoch": 0.8046805377968925, "percentage": 80.47, "elapsed_time": "13:14:53", "remaining_time": "3:12:54"} +{"current_steps": 2597, "total_steps": 3226, "loss": 0.713, "learning_rate": 3.7093457284690094e-06, "epoch": 0.8049905071874153, "percentage": 80.5, "elapsed_time": "13:15:12", "remaining_time": "3:12:36"} +{"current_steps": 2598, "total_steps": 3226, "loss": 0.728, "learning_rate": 3.6979380610182714e-06, "epoch": 0.8053004765779379, "percentage": 80.53, "elapsed_time": "13:15:30", "remaining_time": "3:12:17"} +{"current_steps": 2599, "total_steps": 3226, "loss": 0.6798, "learning_rate": 3.686546174926986e-06, "epoch": 0.8056104459684607, "percentage": 80.56, "elapsed_time": "13:15:48", "remaining_time": "3:11:59"} +{"current_steps": 2600, "total_steps": 3226, "loss": 0.7299, "learning_rate": 3.675170081223187e-06, "epoch": 0.8059204153589833, "percentage": 80.6, "elapsed_time": "13:16:07", "remaining_time": "3:11:40"} +{"current_steps": 2601, "total_steps": 3226, "loss": 0.7483, "learning_rate": 3.6638097909196056e-06, "epoch": 0.806230384749506, "percentage": 80.63, "elapsed_time": "13:16:25", "remaining_time": "3:11:22"} +{"current_steps": 2602, "total_steps": 3226, "loss": 0.7174, "learning_rate": 3.6524653150136604e-06, "epoch": 0.8065403541400287, "percentage": 80.66, "elapsed_time": "13:16:43", "remaining_time": "3:11:04"} +{"current_steps": 2603, "total_steps": 3226, "loss": 0.7005, "learning_rate": 3.641136664487492e-06, "epoch": 0.8068503235305513, "percentage": 80.69, "elapsed_time": "13:17:02", "remaining_time": "3:10:45"} +{"current_steps": 2604, "total_steps": 3226, "loss": 0.7228, "learning_rate": 3.6298238503078853e-06, "epoch": 0.807160292921074, "percentage": 80.72, "elapsed_time": "13:17:20", "remaining_time": "3:10:27"} +{"current_steps": 2605, "total_steps": 3226, "loss": 0.6917, "learning_rate": 3.61852688342633e-06, "epoch": 0.8074702623115967, "percentage": 80.75, "elapsed_time": "13:17:38", "remaining_time": "3:10:08"} +{"current_steps": 2606, "total_steps": 3226, "loss": 0.7107, "learning_rate": 3.607245774778949e-06, "epoch": 0.8077802317021194, "percentage": 80.78, "elapsed_time": "13:17:57", "remaining_time": "3:09:50"} +{"current_steps": 2607, "total_steps": 3226, "loss": 0.6919, "learning_rate": 3.595980535286525e-06, "epoch": 0.8080902010926421, "percentage": 80.81, "elapsed_time": "13:18:15", "remaining_time": "3:09:32"} +{"current_steps": 2608, "total_steps": 3226, "loss": 0.6996, "learning_rate": 3.584731175854479e-06, "epoch": 0.8084001704831648, "percentage": 80.84, "elapsed_time": "13:18:33", "remaining_time": "3:09:13"} +{"current_steps": 2609, "total_steps": 3226, "loss": 0.7173, "learning_rate": 3.5734977073728415e-06, "epoch": 0.8087101398736875, "percentage": 80.87, "elapsed_time": "13:18:51", "remaining_time": "3:08:55"} +{"current_steps": 2610, "total_steps": 3226, "loss": 0.6928, "learning_rate": 3.5622801407162876e-06, "epoch": 0.8090201092642102, "percentage": 80.91, "elapsed_time": "13:19:10", "remaining_time": "3:08:36"} +{"current_steps": 2611, "total_steps": 3226, "loss": 0.7109, "learning_rate": 3.551078486744084e-06, "epoch": 0.8093300786547328, "percentage": 80.94, "elapsed_time": "13:19:28", "remaining_time": "3:08:18"} +{"current_steps": 2612, "total_steps": 3226, "loss": 0.6758, "learning_rate": 3.5398927563000874e-06, "epoch": 0.8096400480452556, "percentage": 80.97, "elapsed_time": "13:19:46", "remaining_time": "3:08:00"} +{"current_steps": 2613, "total_steps": 3226, "loss": 0.7, "learning_rate": 3.5287229602127514e-06, "epoch": 0.8099500174357782, "percentage": 81.0, "elapsed_time": "13:20:05", "remaining_time": "3:07:41"} +{"current_steps": 2614, "total_steps": 3226, "loss": 0.7454, "learning_rate": 3.5175691092950958e-06, "epoch": 0.8102599868263008, "percentage": 81.03, "elapsed_time": "13:20:23", "remaining_time": "3:07:23"} +{"current_steps": 2615, "total_steps": 3226, "loss": 0.6932, "learning_rate": 3.5064312143447097e-06, "epoch": 0.8105699562168236, "percentage": 81.06, "elapsed_time": "13:20:41", "remaining_time": "3:07:05"} +{"current_steps": 2616, "total_steps": 3226, "loss": 0.7006, "learning_rate": 3.4953092861437333e-06, "epoch": 0.8108799256073462, "percentage": 81.09, "elapsed_time": "13:21:00", "remaining_time": "3:06:46"} +{"current_steps": 2617, "total_steps": 3226, "loss": 0.6994, "learning_rate": 3.4842033354588466e-06, "epoch": 0.811189894997869, "percentage": 81.12, "elapsed_time": "13:21:18", "remaining_time": "3:06:28"} +{"current_steps": 2618, "total_steps": 3226, "loss": 0.6835, "learning_rate": 3.4731133730412657e-06, "epoch": 0.8114998643883916, "percentage": 81.15, "elapsed_time": "13:21:36", "remaining_time": "3:06:09"} +{"current_steps": 2619, "total_steps": 3226, "loss": 0.7082, "learning_rate": 3.4620394096267453e-06, "epoch": 0.8118098337789144, "percentage": 81.18, "elapsed_time": "13:21:55", "remaining_time": "3:05:51"} +{"current_steps": 2620, "total_steps": 3226, "loss": 0.7069, "learning_rate": 3.450981455935516e-06, "epoch": 0.812119803169437, "percentage": 81.22, "elapsed_time": "13:22:13", "remaining_time": "3:05:33"} +{"current_steps": 2621, "total_steps": 3226, "loss": 0.6928, "learning_rate": 3.439939522672342e-06, "epoch": 0.8124297725599597, "percentage": 81.25, "elapsed_time": "13:22:31", "remaining_time": "3:05:14"} +{"current_steps": 2622, "total_steps": 3226, "loss": 0.7182, "learning_rate": 3.4289136205264638e-06, "epoch": 0.8127397419504824, "percentage": 81.28, "elapsed_time": "13:22:49", "remaining_time": "3:04:56"} +{"current_steps": 2623, "total_steps": 3226, "loss": 0.7062, "learning_rate": 3.417903760171599e-06, "epoch": 0.8130497113410051, "percentage": 81.31, "elapsed_time": "13:23:08", "remaining_time": "3:04:37"} +{"current_steps": 2624, "total_steps": 3226, "loss": 0.7108, "learning_rate": 3.406909952265964e-06, "epoch": 0.8133596807315278, "percentage": 81.34, "elapsed_time": "13:23:26", "remaining_time": "3:04:19"} +{"current_steps": 2625, "total_steps": 3226, "loss": 0.6897, "learning_rate": 3.3959322074521907e-06, "epoch": 0.8136696501220505, "percentage": 81.37, "elapsed_time": "13:23:44", "remaining_time": "3:04:01"} +{"current_steps": 2626, "total_steps": 3226, "loss": 0.7092, "learning_rate": 3.3849705363574014e-06, "epoch": 0.8139796195125731, "percentage": 81.4, "elapsed_time": "13:24:03", "remaining_time": "3:03:42"} +{"current_steps": 2627, "total_steps": 3226, "loss": 0.6947, "learning_rate": 3.37402494959314e-06, "epoch": 0.8142895889030958, "percentage": 81.43, "elapsed_time": "13:24:21", "remaining_time": "3:03:24"} +{"current_steps": 2628, "total_steps": 3226, "loss": 0.6971, "learning_rate": 3.3630954577553674e-06, "epoch": 0.8145995582936185, "percentage": 81.46, "elapsed_time": "13:24:39", "remaining_time": "3:03:06"} +{"current_steps": 2629, "total_steps": 3226, "loss": 0.6815, "learning_rate": 3.352182071424499e-06, "epoch": 0.8149095276841412, "percentage": 81.49, "elapsed_time": "13:24:58", "remaining_time": "3:02:47"} +{"current_steps": 2630, "total_steps": 3226, "loss": 0.7313, "learning_rate": 3.3412848011653166e-06, "epoch": 0.8152194970746639, "percentage": 81.53, "elapsed_time": "13:25:16", "remaining_time": "3:02:29"} +{"current_steps": 2631, "total_steps": 3226, "loss": 0.7091, "learning_rate": 3.330403657527035e-06, "epoch": 0.8155294664651865, "percentage": 81.56, "elapsed_time": "13:25:35", "remaining_time": "3:02:10"} +{"current_steps": 2632, "total_steps": 3226, "loss": 0.7029, "learning_rate": 3.319538651043244e-06, "epoch": 0.8158394358557093, "percentage": 81.59, "elapsed_time": "13:25:53", "remaining_time": "3:01:52"} +{"current_steps": 2633, "total_steps": 3226, "loss": 0.7155, "learning_rate": 3.308689792231907e-06, "epoch": 0.8161494052462319, "percentage": 81.62, "elapsed_time": "13:26:11", "remaining_time": "3:01:34"} +{"current_steps": 2634, "total_steps": 3226, "loss": 0.7358, "learning_rate": 3.297857091595367e-06, "epoch": 0.8164593746367547, "percentage": 81.65, "elapsed_time": "13:26:30", "remaining_time": "3:01:15"} +{"current_steps": 2635, "total_steps": 3226, "loss": 0.7032, "learning_rate": 3.2870405596203046e-06, "epoch": 0.8167693440272773, "percentage": 81.68, "elapsed_time": "13:26:48", "remaining_time": "3:00:57"} +{"current_steps": 2636, "total_steps": 3226, "loss": 0.7227, "learning_rate": 3.2762402067777787e-06, "epoch": 0.8170793134178, "percentage": 81.71, "elapsed_time": "13:27:06", "remaining_time": "3:00:39"} +{"current_steps": 2637, "total_steps": 3226, "loss": 0.6939, "learning_rate": 3.2654560435231587e-06, "epoch": 0.8173892828083227, "percentage": 81.74, "elapsed_time": "13:27:25", "remaining_time": "3:00:20"} +{"current_steps": 2638, "total_steps": 3226, "loss": 0.7028, "learning_rate": 3.2546880802961578e-06, "epoch": 0.8176992521988453, "percentage": 81.77, "elapsed_time": "13:27:43", "remaining_time": "3:00:02"} +{"current_steps": 2639, "total_steps": 3226, "loss": 0.7018, "learning_rate": 3.243936327520798e-06, "epoch": 0.8180092215893681, "percentage": 81.8, "elapsed_time": "13:28:01", "remaining_time": "2:59:43"} +{"current_steps": 2640, "total_steps": 3226, "loss": 0.6823, "learning_rate": 3.233200795605411e-06, "epoch": 0.8183191909798907, "percentage": 81.84, "elapsed_time": "13:28:20", "remaining_time": "2:59:25"} +{"current_steps": 2641, "total_steps": 3226, "loss": 0.6987, "learning_rate": 3.2224814949426287e-06, "epoch": 0.8186291603704134, "percentage": 81.87, "elapsed_time": "13:28:38", "remaining_time": "2:59:07"} +{"current_steps": 2642, "total_steps": 3226, "loss": 0.706, "learning_rate": 3.211778435909365e-06, "epoch": 0.8189391297609361, "percentage": 81.9, "elapsed_time": "13:28:56", "remaining_time": "2:58:48"} +{"current_steps": 2643, "total_steps": 3226, "loss": 0.7008, "learning_rate": 3.201091628866815e-06, "epoch": 0.8192490991514588, "percentage": 81.93, "elapsed_time": "13:29:15", "remaining_time": "2:58:30"} +{"current_steps": 2644, "total_steps": 3226, "loss": 0.7043, "learning_rate": 3.1904210841604334e-06, "epoch": 0.8195590685419815, "percentage": 81.96, "elapsed_time": "13:29:33", "remaining_time": "2:58:12"} +{"current_steps": 2645, "total_steps": 3226, "loss": 0.7077, "learning_rate": 3.1797668121199555e-06, "epoch": 0.8198690379325042, "percentage": 81.99, "elapsed_time": "13:29:51", "remaining_time": "2:57:53"} +{"current_steps": 2646, "total_steps": 3226, "loss": 0.6739, "learning_rate": 3.1691288230593286e-06, "epoch": 0.8201790073230268, "percentage": 82.02, "elapsed_time": "13:30:10", "remaining_time": "2:57:35"} +{"current_steps": 2647, "total_steps": 3226, "loss": 0.6668, "learning_rate": 3.158507127276762e-06, "epoch": 0.8204889767135496, "percentage": 82.05, "elapsed_time": "13:30:28", "remaining_time": "2:57:16"} +{"current_steps": 2648, "total_steps": 3226, "loss": 0.6926, "learning_rate": 3.1479017350546815e-06, "epoch": 0.8207989461040722, "percentage": 82.08, "elapsed_time": "13:30:46", "remaining_time": "2:56:58"} +{"current_steps": 2649, "total_steps": 3226, "loss": 0.73, "learning_rate": 3.1373126566597347e-06, "epoch": 0.8211089154945949, "percentage": 82.11, "elapsed_time": "13:31:04", "remaining_time": "2:56:40"} +{"current_steps": 2650, "total_steps": 3226, "loss": 0.7348, "learning_rate": 3.1267399023427834e-06, "epoch": 0.8214188848851176, "percentage": 82.15, "elapsed_time": "13:31:23", "remaining_time": "2:56:21"} +{"current_steps": 2651, "total_steps": 3226, "loss": 0.745, "learning_rate": 3.116183482338866e-06, "epoch": 0.8217288542756402, "percentage": 82.18, "elapsed_time": "13:31:41", "remaining_time": "2:56:03"} +{"current_steps": 2652, "total_steps": 3226, "loss": 0.7135, "learning_rate": 3.1056434068672335e-06, "epoch": 0.822038823666163, "percentage": 82.21, "elapsed_time": "13:32:00", "remaining_time": "2:55:44"} +{"current_steps": 2653, "total_steps": 3226, "loss": 0.6896, "learning_rate": 3.0951196861312917e-06, "epoch": 0.8223487930566856, "percentage": 82.24, "elapsed_time": "13:32:18", "remaining_time": "2:55:26"} +{"current_steps": 2654, "total_steps": 3226, "loss": 0.6832, "learning_rate": 3.084612330318624e-06, "epoch": 0.8226587624472084, "percentage": 82.27, "elapsed_time": "13:32:36", "remaining_time": "2:55:08"} +{"current_steps": 2655, "total_steps": 3226, "loss": 0.6943, "learning_rate": 3.074121349600985e-06, "epoch": 0.822968731837731, "percentage": 82.3, "elapsed_time": "13:32:55", "remaining_time": "2:54:49"} +{"current_steps": 2656, "total_steps": 3226, "loss": 0.6948, "learning_rate": 3.063646754134244e-06, "epoch": 0.8232787012282538, "percentage": 82.33, "elapsed_time": "13:33:13", "remaining_time": "2:54:31"} +{"current_steps": 2657, "total_steps": 3226, "loss": 0.6902, "learning_rate": 3.053188554058446e-06, "epoch": 0.8235886706187764, "percentage": 82.36, "elapsed_time": "13:33:31", "remaining_time": "2:54:13"} +{"current_steps": 2658, "total_steps": 3226, "loss": 0.6863, "learning_rate": 3.042746759497739e-06, "epoch": 0.8238986400092991, "percentage": 82.39, "elapsed_time": "13:33:49", "remaining_time": "2:53:54"} +{"current_steps": 2659, "total_steps": 3226, "loss": 0.7277, "learning_rate": 3.032321380560399e-06, "epoch": 0.8242086093998218, "percentage": 82.42, "elapsed_time": "13:34:08", "remaining_time": "2:53:36"} +{"current_steps": 2660, "total_steps": 3226, "loss": 0.7161, "learning_rate": 3.021912427338807e-06, "epoch": 0.8245185787903444, "percentage": 82.46, "elapsed_time": "13:34:26", "remaining_time": "2:53:17"} +{"current_steps": 2661, "total_steps": 3226, "loss": 0.7295, "learning_rate": 3.0115199099094483e-06, "epoch": 0.8248285481808671, "percentage": 82.49, "elapsed_time": "13:34:44", "remaining_time": "2:52:59"} +{"current_steps": 2662, "total_steps": 3226, "loss": 0.6999, "learning_rate": 3.0011438383328915e-06, "epoch": 0.8251385175713898, "percentage": 82.52, "elapsed_time": "13:35:03", "remaining_time": "2:52:41"} +{"current_steps": 2663, "total_steps": 3226, "loss": 0.6832, "learning_rate": 2.9907842226537887e-06, "epoch": 0.8254484869619125, "percentage": 82.55, "elapsed_time": "13:35:21", "remaining_time": "2:52:22"} +{"current_steps": 2664, "total_steps": 3226, "loss": 0.6968, "learning_rate": 2.980441072900857e-06, "epoch": 0.8257584563524352, "percentage": 82.58, "elapsed_time": "13:35:39", "remaining_time": "2:52:04"} +{"current_steps": 2665, "total_steps": 3226, "loss": 0.6967, "learning_rate": 2.970114399086881e-06, "epoch": 0.8260684257429579, "percentage": 82.61, "elapsed_time": "13:35:58", "remaining_time": "2:51:46"} +{"current_steps": 2666, "total_steps": 3226, "loss": 0.7041, "learning_rate": 2.959804211208688e-06, "epoch": 0.8263783951334805, "percentage": 82.64, "elapsed_time": "13:36:16", "remaining_time": "2:51:27"} +{"current_steps": 2667, "total_steps": 3226, "loss": 0.7011, "learning_rate": 2.949510519247152e-06, "epoch": 0.8266883645240033, "percentage": 82.67, "elapsed_time": "13:36:34", "remaining_time": "2:51:09"} +{"current_steps": 2668, "total_steps": 3226, "loss": 0.7142, "learning_rate": 2.9392333331671707e-06, "epoch": 0.8269983339145259, "percentage": 82.7, "elapsed_time": "13:36:53", "remaining_time": "2:50:50"} +{"current_steps": 2669, "total_steps": 3226, "loss": 0.7053, "learning_rate": 2.928972662917673e-06, "epoch": 0.8273083033050487, "percentage": 82.73, "elapsed_time": "13:37:11", "remaining_time": "2:50:32"} +{"current_steps": 2670, "total_steps": 3226, "loss": 0.7003, "learning_rate": 2.918728518431586e-06, "epoch": 0.8276182726955713, "percentage": 82.77, "elapsed_time": "13:37:29", "remaining_time": "2:50:14"} +{"current_steps": 2671, "total_steps": 3226, "loss": 0.7048, "learning_rate": 2.908500909625862e-06, "epoch": 0.827928242086094, "percentage": 82.8, "elapsed_time": "13:37:48", "remaining_time": "2:49:55"} +{"current_steps": 2672, "total_steps": 3226, "loss": 0.7251, "learning_rate": 2.898289846401412e-06, "epoch": 0.8282382114766167, "percentage": 82.83, "elapsed_time": "13:38:06", "remaining_time": "2:49:37"} +{"current_steps": 2673, "total_steps": 3226, "loss": 0.6711, "learning_rate": 2.888095338643169e-06, "epoch": 0.8285481808671393, "percentage": 82.86, "elapsed_time": "13:38:24", "remaining_time": "2:49:18"} +{"current_steps": 2674, "total_steps": 3226, "loss": 0.714, "learning_rate": 2.8779173962200024e-06, "epoch": 0.8288581502576621, "percentage": 82.89, "elapsed_time": "13:38:43", "remaining_time": "2:49:00"} +{"current_steps": 2675, "total_steps": 3226, "loss": 0.7148, "learning_rate": 2.867756028984765e-06, "epoch": 0.8291681196481847, "percentage": 82.92, "elapsed_time": "13:39:01", "remaining_time": "2:48:42"} +{"current_steps": 2676, "total_steps": 3226, "loss": 0.7147, "learning_rate": 2.85761124677427e-06, "epoch": 0.8294780890387075, "percentage": 82.95, "elapsed_time": "13:39:19", "remaining_time": "2:48:23"} +{"current_steps": 2677, "total_steps": 3226, "loss": 0.6957, "learning_rate": 2.8474830594092528e-06, "epoch": 0.8297880584292301, "percentage": 82.98, "elapsed_time": "13:39:38", "remaining_time": "2:48:05"} +{"current_steps": 2678, "total_steps": 3226, "loss": 0.6929, "learning_rate": 2.837371476694413e-06, "epoch": 0.8300980278197528, "percentage": 83.01, "elapsed_time": "13:39:56", "remaining_time": "2:47:47"} +{"current_steps": 2679, "total_steps": 3226, "loss": 0.704, "learning_rate": 2.827276508418344e-06, "epoch": 0.8304079972102755, "percentage": 83.04, "elapsed_time": "13:40:14", "remaining_time": "2:47:28"} +{"current_steps": 2680, "total_steps": 3226, "loss": 0.7111, "learning_rate": 2.817198164353583e-06, "epoch": 0.8307179666007982, "percentage": 83.08, "elapsed_time": "13:40:33", "remaining_time": "2:47:10"} +{"current_steps": 2681, "total_steps": 3226, "loss": 0.7082, "learning_rate": 2.8071364542565626e-06, "epoch": 0.8310279359913209, "percentage": 83.11, "elapsed_time": "13:40:51", "remaining_time": "2:46:51"} +{"current_steps": 2682, "total_steps": 3226, "loss": 0.6958, "learning_rate": 2.797091387867601e-06, "epoch": 0.8313379053818435, "percentage": 83.14, "elapsed_time": "13:41:09", "remaining_time": "2:46:33"} +{"current_steps": 2683, "total_steps": 3226, "loss": 0.7071, "learning_rate": 2.7870629749109303e-06, "epoch": 0.8316478747723662, "percentage": 83.17, "elapsed_time": "13:41:28", "remaining_time": "2:46:15"} +{"current_steps": 2684, "total_steps": 3226, "loss": 0.7063, "learning_rate": 2.7770512250946403e-06, "epoch": 0.8319578441628889, "percentage": 83.2, "elapsed_time": "13:41:46", "remaining_time": "2:45:56"} +{"current_steps": 2685, "total_steps": 3226, "loss": 0.7071, "learning_rate": 2.7670561481106982e-06, "epoch": 0.8322678135534116, "percentage": 83.23, "elapsed_time": "13:42:04", "remaining_time": "2:45:38"} +{"current_steps": 2686, "total_steps": 3226, "loss": 0.6789, "learning_rate": 2.757077753634929e-06, "epoch": 0.8325777829439343, "percentage": 83.26, "elapsed_time": "13:42:23", "remaining_time": "2:45:20"} +{"current_steps": 2687, "total_steps": 3226, "loss": 0.7546, "learning_rate": 2.747116051327008e-06, "epoch": 0.832887752334457, "percentage": 83.29, "elapsed_time": "13:42:41", "remaining_time": "2:45:01"} +{"current_steps": 2688, "total_steps": 3226, "loss": 0.6924, "learning_rate": 2.7371710508304494e-06, "epoch": 0.8331977217249796, "percentage": 83.32, "elapsed_time": "13:42:59", "remaining_time": "2:44:43"} +{"current_steps": 2689, "total_steps": 3226, "loss": 0.7423, "learning_rate": 2.727242761772606e-06, "epoch": 0.8335076911155024, "percentage": 83.35, "elapsed_time": "13:43:18", "remaining_time": "2:44:24"} +{"current_steps": 2690, "total_steps": 3226, "loss": 0.7199, "learning_rate": 2.7173311937646473e-06, "epoch": 0.833817660506025, "percentage": 83.38, "elapsed_time": "13:43:36", "remaining_time": "2:44:06"} +{"current_steps": 2691, "total_steps": 3226, "loss": 0.6931, "learning_rate": 2.7074363564015536e-06, "epoch": 0.8341276298965478, "percentage": 83.42, "elapsed_time": "13:43:54", "remaining_time": "2:43:48"} +{"current_steps": 2692, "total_steps": 3226, "loss": 0.6877, "learning_rate": 2.697558259262114e-06, "epoch": 0.8344375992870704, "percentage": 83.45, "elapsed_time": "13:44:13", "remaining_time": "2:43:29"} +{"current_steps": 2693, "total_steps": 3226, "loss": 0.6966, "learning_rate": 2.6876969119089125e-06, "epoch": 0.834747568677593, "percentage": 83.48, "elapsed_time": "13:44:31", "remaining_time": "2:43:11"} +{"current_steps": 2694, "total_steps": 3226, "loss": 0.7207, "learning_rate": 2.6778523238883146e-06, "epoch": 0.8350575380681158, "percentage": 83.51, "elapsed_time": "13:44:49", "remaining_time": "2:42:53"} +{"current_steps": 2695, "total_steps": 3226, "loss": 0.6706, "learning_rate": 2.6680245047304643e-06, "epoch": 0.8353675074586384, "percentage": 83.54, "elapsed_time": "13:45:08", "remaining_time": "2:42:34"} +{"current_steps": 2696, "total_steps": 3226, "loss": 0.7164, "learning_rate": 2.6582134639492686e-06, "epoch": 0.8356774768491612, "percentage": 83.57, "elapsed_time": "13:45:26", "remaining_time": "2:42:16"} +{"current_steps": 2697, "total_steps": 3226, "loss": 0.699, "learning_rate": 2.648419211042397e-06, "epoch": 0.8359874462396838, "percentage": 83.6, "elapsed_time": "13:45:44", "remaining_time": "2:41:57"} +{"current_steps": 2698, "total_steps": 3226, "loss": 0.7149, "learning_rate": 2.63864175549126e-06, "epoch": 0.8362974156302065, "percentage": 83.63, "elapsed_time": "13:46:03", "remaining_time": "2:41:39"} +{"current_steps": 2699, "total_steps": 3226, "loss": 0.7097, "learning_rate": 2.6288811067610276e-06, "epoch": 0.8366073850207292, "percentage": 83.66, "elapsed_time": "13:46:21", "remaining_time": "2:41:21"} +{"current_steps": 2700, "total_steps": 3226, "loss": 0.7195, "learning_rate": 2.6191372743005696e-06, "epoch": 0.8369173544112519, "percentage": 83.69, "elapsed_time": "13:46:39", "remaining_time": "2:41:02"} +{"current_steps": 2701, "total_steps": 3226, "loss": 0.7035, "learning_rate": 2.6094102675424895e-06, "epoch": 0.8372273238017746, "percentage": 83.73, "elapsed_time": "13:46:58", "remaining_time": "2:40:44"} +{"current_steps": 2702, "total_steps": 3226, "loss": 0.7211, "learning_rate": 2.5997000959031238e-06, "epoch": 0.8375372931922973, "percentage": 83.76, "elapsed_time": "13:47:16", "remaining_time": "2:40:26"} +{"current_steps": 2703, "total_steps": 3226, "loss": 0.6997, "learning_rate": 2.5900067687824693e-06, "epoch": 0.8378472625828199, "percentage": 83.79, "elapsed_time": "13:47:34", "remaining_time": "2:40:07"} +{"current_steps": 2704, "total_steps": 3226, "loss": 0.7099, "learning_rate": 2.5803302955642616e-06, "epoch": 0.8381572319733427, "percentage": 83.82, "elapsed_time": "13:47:53", "remaining_time": "2:39:49"} +{"current_steps": 2705, "total_steps": 3226, "loss": 0.6771, "learning_rate": 2.570670685615877e-06, "epoch": 0.8384672013638653, "percentage": 83.85, "elapsed_time": "13:48:11", "remaining_time": "2:39:30"} +{"current_steps": 2706, "total_steps": 3226, "loss": 0.7039, "learning_rate": 2.561027948288406e-06, "epoch": 0.838777170754388, "percentage": 83.88, "elapsed_time": "13:48:29", "remaining_time": "2:39:12"} +{"current_steps": 2707, "total_steps": 3226, "loss": 0.7131, "learning_rate": 2.551402092916586e-06, "epoch": 0.8390871401449107, "percentage": 83.91, "elapsed_time": "13:48:48", "remaining_time": "2:38:54"} +{"current_steps": 2708, "total_steps": 3226, "loss": 0.7162, "learning_rate": 2.5417931288187992e-06, "epoch": 0.8393971095354333, "percentage": 83.94, "elapsed_time": "13:49:06", "remaining_time": "2:38:35"} +{"current_steps": 2709, "total_steps": 3226, "loss": 0.684, "learning_rate": 2.532201065297113e-06, "epoch": 0.8397070789259561, "percentage": 83.97, "elapsed_time": "13:49:24", "remaining_time": "2:38:17"} +{"current_steps": 2710, "total_steps": 3226, "loss": 0.7151, "learning_rate": 2.522625911637189e-06, "epoch": 0.8400170483164787, "percentage": 84.0, "elapsed_time": "13:49:43", "remaining_time": "2:37:58"} +{"current_steps": 2711, "total_steps": 3226, "loss": 0.7286, "learning_rate": 2.5130676771083585e-06, "epoch": 0.8403270177070015, "percentage": 84.04, "elapsed_time": "13:50:01", "remaining_time": "2:37:40"} +{"current_steps": 2712, "total_steps": 3226, "loss": 0.699, "learning_rate": 2.5035263709635516e-06, "epoch": 0.8406369870975241, "percentage": 84.07, "elapsed_time": "13:50:19", "remaining_time": "2:37:22"} +{"current_steps": 2713, "total_steps": 3226, "loss": 0.7046, "learning_rate": 2.4940020024393175e-06, "epoch": 0.8409469564880468, "percentage": 84.1, "elapsed_time": "13:50:38", "remaining_time": "2:37:03"} +{"current_steps": 2714, "total_steps": 3226, "loss": 0.6796, "learning_rate": 2.4844945807558074e-06, "epoch": 0.8412569258785695, "percentage": 84.13, "elapsed_time": "13:50:56", "remaining_time": "2:36:45"} +{"current_steps": 2715, "total_steps": 3226, "loss": 0.7111, "learning_rate": 2.475004115116766e-06, "epoch": 0.8415668952690922, "percentage": 84.16, "elapsed_time": "13:51:14", "remaining_time": "2:36:27"} +{"current_steps": 2716, "total_steps": 3226, "loss": 0.7017, "learning_rate": 2.465530614709528e-06, "epoch": 0.8418768646596149, "percentage": 84.19, "elapsed_time": "13:51:32", "remaining_time": "2:36:08"} +{"current_steps": 2717, "total_steps": 3226, "loss": 0.7189, "learning_rate": 2.4560740887049983e-06, "epoch": 0.8421868340501375, "percentage": 84.22, "elapsed_time": "13:51:51", "remaining_time": "2:35:50"} +{"current_steps": 2718, "total_steps": 3226, "loss": 0.7136, "learning_rate": 2.4466345462576557e-06, "epoch": 0.8424968034406602, "percentage": 84.25, "elapsed_time": "13:52:09", "remaining_time": "2:35:31"} +{"current_steps": 2719, "total_steps": 3226, "loss": 0.6885, "learning_rate": 2.437211996505535e-06, "epoch": 0.8428067728311829, "percentage": 84.28, "elapsed_time": "13:52:28", "remaining_time": "2:35:13"} +{"current_steps": 2720, "total_steps": 3226, "loss": 0.7188, "learning_rate": 2.42780644857022e-06, "epoch": 0.8431167422217056, "percentage": 84.31, "elapsed_time": "13:52:46", "remaining_time": "2:34:55"} +{"current_steps": 2721, "total_steps": 3226, "loss": 0.6926, "learning_rate": 2.4184179115568364e-06, "epoch": 0.8434267116122283, "percentage": 84.35, "elapsed_time": "13:53:04", "remaining_time": "2:34:36"} +{"current_steps": 2722, "total_steps": 3226, "loss": 0.725, "learning_rate": 2.4090463945540465e-06, "epoch": 0.843736681002751, "percentage": 84.38, "elapsed_time": "13:53:23", "remaining_time": "2:34:18"} +{"current_steps": 2723, "total_steps": 3226, "loss": 0.7035, "learning_rate": 2.3996919066340276e-06, "epoch": 0.8440466503932736, "percentage": 84.41, "elapsed_time": "13:53:41", "remaining_time": "2:34:00"} +{"current_steps": 2724, "total_steps": 3226, "loss": 0.7152, "learning_rate": 2.390354456852475e-06, "epoch": 0.8443566197837964, "percentage": 84.44, "elapsed_time": "13:53:59", "remaining_time": "2:33:41"} +{"current_steps": 2725, "total_steps": 3226, "loss": 0.6866, "learning_rate": 2.381034054248608e-06, "epoch": 0.844666589174319, "percentage": 84.47, "elapsed_time": "13:54:18", "remaining_time": "2:33:23"} +{"current_steps": 2726, "total_steps": 3226, "loss": 0.6855, "learning_rate": 2.371730707845108e-06, "epoch": 0.8449765585648418, "percentage": 84.5, "elapsed_time": "13:54:36", "remaining_time": "2:33:04"} +{"current_steps": 2727, "total_steps": 3226, "loss": 0.6812, "learning_rate": 2.3624444266481696e-06, "epoch": 0.8452865279553644, "percentage": 84.53, "elapsed_time": "13:54:54", "remaining_time": "2:32:46"} +{"current_steps": 2728, "total_steps": 3226, "loss": 0.7133, "learning_rate": 2.35317521964747e-06, "epoch": 0.845596497345887, "percentage": 84.56, "elapsed_time": "13:55:13", "remaining_time": "2:32:28"} +{"current_steps": 2729, "total_steps": 3226, "loss": 0.7061, "learning_rate": 2.3439230958161363e-06, "epoch": 0.8459064667364098, "percentage": 84.59, "elapsed_time": "13:55:31", "remaining_time": "2:32:09"} +{"current_steps": 2730, "total_steps": 3226, "loss": 0.7193, "learning_rate": 2.3346880641107883e-06, "epoch": 0.8462164361269324, "percentage": 84.62, "elapsed_time": "13:55:49", "remaining_time": "2:31:51"} +{"current_steps": 2731, "total_steps": 3226, "loss": 0.7189, "learning_rate": 2.3254701334714636e-06, "epoch": 0.8465264055174552, "percentage": 84.66, "elapsed_time": "13:56:08", "remaining_time": "2:31:33"} +{"current_steps": 2732, "total_steps": 3226, "loss": 0.6762, "learning_rate": 2.316269312821675e-06, "epoch": 0.8468363749079778, "percentage": 84.69, "elapsed_time": "13:56:26", "remaining_time": "2:31:14"} +{"current_steps": 2733, "total_steps": 3226, "loss": 0.7057, "learning_rate": 2.3070856110683605e-06, "epoch": 0.8471463442985006, "percentage": 84.72, "elapsed_time": "13:56:44", "remaining_time": "2:30:56"} +{"current_steps": 2734, "total_steps": 3226, "loss": 0.6893, "learning_rate": 2.2979190371018832e-06, "epoch": 0.8474563136890232, "percentage": 84.75, "elapsed_time": "13:57:03", "remaining_time": "2:30:37"} +{"current_steps": 2735, "total_steps": 3226, "loss": 0.6785, "learning_rate": 2.2887695997960326e-06, "epoch": 0.8477662830795459, "percentage": 84.78, "elapsed_time": "13:57:21", "remaining_time": "2:30:19"} +{"current_steps": 2736, "total_steps": 3226, "loss": 0.7189, "learning_rate": 2.279637308007996e-06, "epoch": 0.8480762524700686, "percentage": 84.81, "elapsed_time": "13:57:39", "remaining_time": "2:30:01"} +{"current_steps": 2737, "total_steps": 3226, "loss": 0.7127, "learning_rate": 2.2705221705783798e-06, "epoch": 0.8483862218605913, "percentage": 84.84, "elapsed_time": "13:57:58", "remaining_time": "2:29:42"} +{"current_steps": 2738, "total_steps": 3226, "loss": 0.7082, "learning_rate": 2.2614241963311723e-06, "epoch": 0.848696191251114, "percentage": 84.87, "elapsed_time": "13:58:16", "remaining_time": "2:29:24"} +{"current_steps": 2739, "total_steps": 3226, "loss": 0.6967, "learning_rate": 2.2523433940737525e-06, "epoch": 0.8490061606416366, "percentage": 84.9, "elapsed_time": "13:58:34", "remaining_time": "2:29:06"} +{"current_steps": 2740, "total_steps": 3226, "loss": 0.6892, "learning_rate": 2.243279772596871e-06, "epoch": 0.8493161300321593, "percentage": 84.93, "elapsed_time": "13:58:53", "remaining_time": "2:28:47"} +{"current_steps": 2741, "total_steps": 3226, "loss": 0.6859, "learning_rate": 2.234233340674652e-06, "epoch": 0.849626099422682, "percentage": 84.97, "elapsed_time": "13:59:11", "remaining_time": "2:28:29"} +{"current_steps": 2742, "total_steps": 3226, "loss": 0.7066, "learning_rate": 2.2252041070645736e-06, "epoch": 0.8499360688132047, "percentage": 85.0, "elapsed_time": "13:59:29", "remaining_time": "2:28:10"} +{"current_steps": 2743, "total_steps": 3226, "loss": 0.7143, "learning_rate": 2.216192080507471e-06, "epoch": 0.8502460382037274, "percentage": 85.03, "elapsed_time": "13:59:48", "remaining_time": "2:27:52"} +{"current_steps": 2744, "total_steps": 3226, "loss": 0.7206, "learning_rate": 2.2071972697275144e-06, "epoch": 0.8505560075942501, "percentage": 85.06, "elapsed_time": "14:00:06", "remaining_time": "2:27:34"} +{"current_steps": 2745, "total_steps": 3226, "loss": 0.6974, "learning_rate": 2.1982196834322146e-06, "epoch": 0.8508659769847727, "percentage": 85.09, "elapsed_time": "14:00:24", "remaining_time": "2:27:15"} +{"current_steps": 2746, "total_steps": 3226, "loss": 0.7033, "learning_rate": 2.189259330312403e-06, "epoch": 0.8511759463752955, "percentage": 85.12, "elapsed_time": "14:00:43", "remaining_time": "2:26:57"} +{"current_steps": 2747, "total_steps": 3226, "loss": 0.7262, "learning_rate": 2.1803162190422354e-06, "epoch": 0.8514859157658181, "percentage": 85.15, "elapsed_time": "14:01:01", "remaining_time": "2:26:39"} +{"current_steps": 2748, "total_steps": 3226, "loss": 0.7031, "learning_rate": 2.1713903582791707e-06, "epoch": 0.8517958851563409, "percentage": 85.18, "elapsed_time": "14:01:19", "remaining_time": "2:26:20"} +{"current_steps": 2749, "total_steps": 3226, "loss": 0.7124, "learning_rate": 2.162481756663968e-06, "epoch": 0.8521058545468635, "percentage": 85.21, "elapsed_time": "14:01:38", "remaining_time": "2:26:02"} +{"current_steps": 2750, "total_steps": 3226, "loss": 0.7051, "learning_rate": 2.1535904228206773e-06, "epoch": 0.8524158239373861, "percentage": 85.24, "elapsed_time": "14:01:56", "remaining_time": "2:25:43"} +{"current_steps": 2751, "total_steps": 3226, "loss": 0.7185, "learning_rate": 2.144716365356645e-06, "epoch": 0.8527257933279089, "percentage": 85.28, "elapsed_time": "14:02:14", "remaining_time": "2:25:25"} +{"current_steps": 2752, "total_steps": 3226, "loss": 0.7309, "learning_rate": 2.1358595928624724e-06, "epoch": 0.8530357627184315, "percentage": 85.31, "elapsed_time": "14:02:33", "remaining_time": "2:25:07"} +{"current_steps": 2753, "total_steps": 3226, "loss": 0.7004, "learning_rate": 2.1270201139120463e-06, "epoch": 0.8533457321089543, "percentage": 85.34, "elapsed_time": "14:02:51", "remaining_time": "2:24:48"} +{"current_steps": 2754, "total_steps": 3226, "loss": 0.7039, "learning_rate": 2.118197937062505e-06, "epoch": 0.8536557014994769, "percentage": 85.37, "elapsed_time": "14:03:09", "remaining_time": "2:24:30"} +{"current_steps": 2755, "total_steps": 3226, "loss": 0.705, "learning_rate": 2.1093930708542286e-06, "epoch": 0.8539656708899996, "percentage": 85.4, "elapsed_time": "14:03:28", "remaining_time": "2:24:12"} +{"current_steps": 2756, "total_steps": 3226, "loss": 0.7286, "learning_rate": 2.1006055238108592e-06, "epoch": 0.8542756402805223, "percentage": 85.43, "elapsed_time": "14:03:46", "remaining_time": "2:23:53"} +{"current_steps": 2757, "total_steps": 3226, "loss": 0.6981, "learning_rate": 2.091835304439249e-06, "epoch": 0.854585609671045, "percentage": 85.46, "elapsed_time": "14:04:04", "remaining_time": "2:23:35"} +{"current_steps": 2758, "total_steps": 3226, "loss": 0.7235, "learning_rate": 2.0830824212295007e-06, "epoch": 0.8548955790615677, "percentage": 85.49, "elapsed_time": "14:04:23", "remaining_time": "2:23:16"} +{"current_steps": 2759, "total_steps": 3226, "loss": 0.7177, "learning_rate": 2.0743468826549164e-06, "epoch": 0.8552055484520904, "percentage": 85.52, "elapsed_time": "14:04:41", "remaining_time": "2:22:58"} +{"current_steps": 2760, "total_steps": 3226, "loss": 0.7361, "learning_rate": 2.065628697172015e-06, "epoch": 0.855515517842613, "percentage": 85.55, "elapsed_time": "14:04:59", "remaining_time": "2:22:40"} +{"current_steps": 2761, "total_steps": 3226, "loss": 0.6998, "learning_rate": 2.05692787322052e-06, "epoch": 0.8558254872331357, "percentage": 85.59, "elapsed_time": "14:05:18", "remaining_time": "2:22:21"} +{"current_steps": 2762, "total_steps": 3226, "loss": 0.6903, "learning_rate": 2.048244419223331e-06, "epoch": 0.8561354566236584, "percentage": 85.62, "elapsed_time": "14:05:36", "remaining_time": "2:22:03"} +{"current_steps": 2763, "total_steps": 3226, "loss": 0.7251, "learning_rate": 2.0395783435865545e-06, "epoch": 0.856445426014181, "percentage": 85.65, "elapsed_time": "14:05:54", "remaining_time": "2:21:45"} +{"current_steps": 2764, "total_steps": 3226, "loss": 0.7291, "learning_rate": 2.030929654699463e-06, "epoch": 0.8567553954047038, "percentage": 85.68, "elapsed_time": "14:06:13", "remaining_time": "2:21:26"} +{"current_steps": 2765, "total_steps": 3226, "loss": 0.6955, "learning_rate": 2.022298360934496e-06, "epoch": 0.8570653647952264, "percentage": 85.71, "elapsed_time": "14:06:31", "remaining_time": "2:21:08"} +{"current_steps": 2766, "total_steps": 3226, "loss": 0.7072, "learning_rate": 2.013684470647259e-06, "epoch": 0.8573753341857492, "percentage": 85.74, "elapsed_time": "14:06:49", "remaining_time": "2:20:49"} +{"current_steps": 2767, "total_steps": 3226, "loss": 0.6986, "learning_rate": 2.0050879921765044e-06, "epoch": 0.8576853035762718, "percentage": 85.77, "elapsed_time": "14:07:08", "remaining_time": "2:20:31"} +{"current_steps": 2768, "total_steps": 3226, "loss": 0.7125, "learning_rate": 1.9965089338441323e-06, "epoch": 0.8579952729667946, "percentage": 85.8, "elapsed_time": "14:07:26", "remaining_time": "2:20:13"} +{"current_steps": 2769, "total_steps": 3226, "loss": 0.7041, "learning_rate": 1.9879473039551777e-06, "epoch": 0.8583052423573172, "percentage": 85.83, "elapsed_time": "14:07:44", "remaining_time": "2:19:54"} +{"current_steps": 2770, "total_steps": 3226, "loss": 0.7181, "learning_rate": 1.979403110797804e-06, "epoch": 0.85861521174784, "percentage": 85.86, "elapsed_time": "14:08:02", "remaining_time": "2:19:36"} +{"current_steps": 2771, "total_steps": 3226, "loss": 0.6917, "learning_rate": 1.9708763626432924e-06, "epoch": 0.8589251811383626, "percentage": 85.9, "elapsed_time": "14:08:21", "remaining_time": "2:19:18"} +{"current_steps": 2772, "total_steps": 3226, "loss": 0.6977, "learning_rate": 1.9623670677460494e-06, "epoch": 0.8592351505288853, "percentage": 85.93, "elapsed_time": "14:08:39", "remaining_time": "2:18:59"} +{"current_steps": 2773, "total_steps": 3226, "loss": 0.7214, "learning_rate": 1.9538752343435674e-06, "epoch": 0.859545119919408, "percentage": 85.96, "elapsed_time": "14:08:57", "remaining_time": "2:18:41"} +{"current_steps": 2774, "total_steps": 3226, "loss": 0.6998, "learning_rate": 1.945400870656442e-06, "epoch": 0.8598550893099306, "percentage": 85.99, "elapsed_time": "14:09:16", "remaining_time": "2:18:22"} +{"current_steps": 2775, "total_steps": 3226, "loss": 0.7098, "learning_rate": 1.9369439848883596e-06, "epoch": 0.8601650587004533, "percentage": 86.02, "elapsed_time": "14:09:34", "remaining_time": "2:18:04"} +{"current_steps": 2776, "total_steps": 3226, "loss": 0.7322, "learning_rate": 1.928504585226083e-06, "epoch": 0.860475028090976, "percentage": 86.05, "elapsed_time": "14:09:52", "remaining_time": "2:17:46"} +{"current_steps": 2777, "total_steps": 3226, "loss": 0.7081, "learning_rate": 1.9200826798394613e-06, "epoch": 0.8607849974814987, "percentage": 86.08, "elapsed_time": "14:10:11", "remaining_time": "2:17:27"} +{"current_steps": 2778, "total_steps": 3226, "loss": 0.7443, "learning_rate": 1.9116782768813812e-06, "epoch": 0.8610949668720214, "percentage": 86.11, "elapsed_time": "14:10:29", "remaining_time": "2:17:09"} +{"current_steps": 2779, "total_steps": 3226, "loss": 0.7171, "learning_rate": 1.9032913844878153e-06, "epoch": 0.8614049362625441, "percentage": 86.14, "elapsed_time": "14:10:47", "remaining_time": "2:16:50"} +{"current_steps": 2780, "total_steps": 3226, "loss": 0.7261, "learning_rate": 1.89492201077776e-06, "epoch": 0.8617149056530667, "percentage": 86.17, "elapsed_time": "14:11:06", "remaining_time": "2:16:32"} +{"current_steps": 2781, "total_steps": 3226, "loss": 0.6914, "learning_rate": 1.8865701638532651e-06, "epoch": 0.8620248750435895, "percentage": 86.21, "elapsed_time": "14:11:24", "remaining_time": "2:16:14"} +{"current_steps": 2782, "total_steps": 3226, "loss": 0.6805, "learning_rate": 1.8782358517994238e-06, "epoch": 0.8623348444341121, "percentage": 86.24, "elapsed_time": "14:11:42", "remaining_time": "2:15:55"} +{"current_steps": 2783, "total_steps": 3226, "loss": 0.6878, "learning_rate": 1.869919082684324e-06, "epoch": 0.8626448138246349, "percentage": 86.27, "elapsed_time": "14:12:01", "remaining_time": "2:15:37"} +{"current_steps": 2784, "total_steps": 3226, "loss": 0.7058, "learning_rate": 1.8616198645591054e-06, "epoch": 0.8629547832151575, "percentage": 86.3, "elapsed_time": "14:12:19", "remaining_time": "2:15:19"} +{"current_steps": 2785, "total_steps": 3226, "loss": 0.725, "learning_rate": 1.8533382054578953e-06, "epoch": 0.8632647526056801, "percentage": 86.33, "elapsed_time": "14:12:37", "remaining_time": "2:15:00"} +{"current_steps": 2786, "total_steps": 3226, "loss": 0.7058, "learning_rate": 1.8450741133978312e-06, "epoch": 0.8635747219962029, "percentage": 86.36, "elapsed_time": "14:12:55", "remaining_time": "2:14:42"} +{"current_steps": 2787, "total_steps": 3226, "loss": 0.7138, "learning_rate": 1.8368275963790406e-06, "epoch": 0.8638846913867255, "percentage": 86.39, "elapsed_time": "14:13:14", "remaining_time": "2:14:23"} +{"current_steps": 2788, "total_steps": 3226, "loss": 0.7138, "learning_rate": 1.8285986623846397e-06, "epoch": 0.8641946607772483, "percentage": 86.42, "elapsed_time": "14:13:32", "remaining_time": "2:14:05"} +{"current_steps": 2789, "total_steps": 3226, "loss": 0.7106, "learning_rate": 1.8203873193807252e-06, "epoch": 0.8645046301677709, "percentage": 86.45, "elapsed_time": "14:13:50", "remaining_time": "2:13:47"} +{"current_steps": 2790, "total_steps": 3226, "loss": 0.7556, "learning_rate": 1.8121935753163588e-06, "epoch": 0.8648145995582937, "percentage": 86.48, "elapsed_time": "14:14:09", "remaining_time": "2:13:28"} +{"current_steps": 2791, "total_steps": 3226, "loss": 0.6828, "learning_rate": 1.8040174381235708e-06, "epoch": 0.8651245689488163, "percentage": 86.52, "elapsed_time": "14:14:27", "remaining_time": "2:13:10"} +{"current_steps": 2792, "total_steps": 3226, "loss": 0.7117, "learning_rate": 1.7958589157173477e-06, "epoch": 0.865434538339339, "percentage": 86.55, "elapsed_time": "14:14:45", "remaining_time": "2:12:52"} +{"current_steps": 2793, "total_steps": 3226, "loss": 0.6708, "learning_rate": 1.7877180159956164e-06, "epoch": 0.8657445077298617, "percentage": 86.58, "elapsed_time": "14:15:04", "remaining_time": "2:12:33"} +{"current_steps": 2794, "total_steps": 3226, "loss": 0.6871, "learning_rate": 1.7795947468392526e-06, "epoch": 0.8660544771203844, "percentage": 86.61, "elapsed_time": "14:15:22", "remaining_time": "2:12:15"} +{"current_steps": 2795, "total_steps": 3226, "loss": 0.7045, "learning_rate": 1.7714891161120618e-06, "epoch": 0.866364446510907, "percentage": 86.64, "elapsed_time": "14:15:40", "remaining_time": "2:11:56"} +{"current_steps": 2796, "total_steps": 3226, "loss": 0.7163, "learning_rate": 1.763401131660769e-06, "epoch": 0.8666744159014297, "percentage": 86.67, "elapsed_time": "14:15:59", "remaining_time": "2:11:38"} +{"current_steps": 2797, "total_steps": 3226, "loss": 0.7042, "learning_rate": 1.7553308013150228e-06, "epoch": 0.8669843852919524, "percentage": 86.7, "elapsed_time": "14:16:17", "remaining_time": "2:11:20"} +{"current_steps": 2798, "total_steps": 3226, "loss": 0.6954, "learning_rate": 1.7472781328873867e-06, "epoch": 0.8672943546824751, "percentage": 86.73, "elapsed_time": "14:16:35", "remaining_time": "2:11:01"} +{"current_steps": 2799, "total_steps": 3226, "loss": 0.7213, "learning_rate": 1.7392431341733095e-06, "epoch": 0.8676043240729978, "percentage": 86.76, "elapsed_time": "14:16:54", "remaining_time": "2:10:43"} +{"current_steps": 2800, "total_steps": 3226, "loss": 0.7118, "learning_rate": 1.7312258129511516e-06, "epoch": 0.8679142934635204, "percentage": 86.79, "elapsed_time": "14:17:12", "remaining_time": "2:10:25"} +{"current_steps": 2801, "total_steps": 3226, "loss": 0.6844, "learning_rate": 1.7232261769821512e-06, "epoch": 0.8682242628540432, "percentage": 86.83, "elapsed_time": "14:17:30", "remaining_time": "2:10:06"} +{"current_steps": 2802, "total_steps": 3226, "loss": 0.6988, "learning_rate": 1.7152442340104247e-06, "epoch": 0.8685342322445658, "percentage": 86.86, "elapsed_time": "14:17:49", "remaining_time": "2:09:48"} +{"current_steps": 2803, "total_steps": 3226, "loss": 0.7176, "learning_rate": 1.707279991762978e-06, "epoch": 0.8688442016350886, "percentage": 86.89, "elapsed_time": "14:18:07", "remaining_time": "2:09:29"} +{"current_steps": 2804, "total_steps": 3226, "loss": 0.6936, "learning_rate": 1.69933345794965e-06, "epoch": 0.8691541710256112, "percentage": 86.92, "elapsed_time": "14:18:25", "remaining_time": "2:09:11"} +{"current_steps": 2805, "total_steps": 3226, "loss": 0.6878, "learning_rate": 1.6914046402631745e-06, "epoch": 0.869464140416134, "percentage": 86.95, "elapsed_time": "14:18:44", "remaining_time": "2:08:53"} +{"current_steps": 2806, "total_steps": 3226, "loss": 0.7207, "learning_rate": 1.6834935463790959e-06, "epoch": 0.8697741098066566, "percentage": 86.98, "elapsed_time": "14:19:02", "remaining_time": "2:08:34"} +{"current_steps": 2807, "total_steps": 3226, "loss": 0.7161, "learning_rate": 1.6756001839558367e-06, "epoch": 0.8700840791971792, "percentage": 87.01, "elapsed_time": "14:19:20", "remaining_time": "2:08:16"} +{"current_steps": 2808, "total_steps": 3226, "loss": 0.7365, "learning_rate": 1.6677245606346338e-06, "epoch": 0.870394048587702, "percentage": 87.04, "elapsed_time": "14:19:39", "remaining_time": "2:07:58"} +{"current_steps": 2809, "total_steps": 3226, "loss": 0.7221, "learning_rate": 1.659866684039546e-06, "epoch": 0.8707040179782246, "percentage": 87.07, "elapsed_time": "14:19:57", "remaining_time": "2:07:39"} +{"current_steps": 2810, "total_steps": 3226, "loss": 0.7239, "learning_rate": 1.6520265617774756e-06, "epoch": 0.8710139873687474, "percentage": 87.1, "elapsed_time": "14:20:15", "remaining_time": "2:07:21"} +{"current_steps": 2811, "total_steps": 3226, "loss": 0.6848, "learning_rate": 1.64420420143812e-06, "epoch": 0.87132395675927, "percentage": 87.14, "elapsed_time": "14:20:34", "remaining_time": "2:07:02"} +{"current_steps": 2812, "total_steps": 3226, "loss": 0.6897, "learning_rate": 1.636399610593984e-06, "epoch": 0.8716339261497927, "percentage": 87.17, "elapsed_time": "14:20:52", "remaining_time": "2:06:44"} +{"current_steps": 2813, "total_steps": 3226, "loss": 0.7011, "learning_rate": 1.6286127968003752e-06, "epoch": 0.8719438955403154, "percentage": 87.2, "elapsed_time": "14:21:10", "remaining_time": "2:06:26"} +{"current_steps": 2814, "total_steps": 3226, "loss": 0.721, "learning_rate": 1.620843767595388e-06, "epoch": 0.8722538649308381, "percentage": 87.23, "elapsed_time": "14:21:29", "remaining_time": "2:06:07"} +{"current_steps": 2815, "total_steps": 3226, "loss": 0.7243, "learning_rate": 1.6130925304999024e-06, "epoch": 0.8725638343213608, "percentage": 87.26, "elapsed_time": "14:21:47", "remaining_time": "2:05:49"} +{"current_steps": 2816, "total_steps": 3226, "loss": 0.7124, "learning_rate": 1.6053590930175756e-06, "epoch": 0.8728738037118835, "percentage": 87.29, "elapsed_time": "14:22:05", "remaining_time": "2:05:31"} +{"current_steps": 2817, "total_steps": 3226, "loss": 0.6627, "learning_rate": 1.5976434626348303e-06, "epoch": 0.8731837731024061, "percentage": 87.32, "elapsed_time": "14:22:24", "remaining_time": "2:05:12"} +{"current_steps": 2818, "total_steps": 3226, "loss": 0.6777, "learning_rate": 1.5899456468208541e-06, "epoch": 0.8734937424929288, "percentage": 87.35, "elapsed_time": "14:22:42", "remaining_time": "2:04:54"} +{"current_steps": 2819, "total_steps": 3226, "loss": 0.7026, "learning_rate": 1.5822656530275837e-06, "epoch": 0.8738037118834515, "percentage": 87.38, "elapsed_time": "14:23:00", "remaining_time": "2:04:35"} +{"current_steps": 2820, "total_steps": 3226, "loss": 0.7154, "learning_rate": 1.5746034886897121e-06, "epoch": 0.8741136812739742, "percentage": 87.41, "elapsed_time": "14:23:19", "remaining_time": "2:04:17"} +{"current_steps": 2821, "total_steps": 3226, "loss": 0.7071, "learning_rate": 1.566959161224666e-06, "epoch": 0.8744236506644969, "percentage": 87.45, "elapsed_time": "14:23:37", "remaining_time": "2:03:59"} +{"current_steps": 2822, "total_steps": 3226, "loss": 0.7185, "learning_rate": 1.5593326780326057e-06, "epoch": 0.8747336200550195, "percentage": 87.48, "elapsed_time": "14:23:55", "remaining_time": "2:03:40"} +{"current_steps": 2823, "total_steps": 3226, "loss": 0.6822, "learning_rate": 1.5517240464964167e-06, "epoch": 0.8750435894455423, "percentage": 87.51, "elapsed_time": "14:24:14", "remaining_time": "2:03:22"} +{"current_steps": 2824, "total_steps": 3226, "loss": 0.7087, "learning_rate": 1.5441332739817028e-06, "epoch": 0.8753535588360649, "percentage": 87.54, "elapsed_time": "14:24:32", "remaining_time": "2:03:04"} +{"current_steps": 2825, "total_steps": 3226, "loss": 0.702, "learning_rate": 1.5365603678367813e-06, "epoch": 0.8756635282265877, "percentage": 87.57, "elapsed_time": "14:24:50", "remaining_time": "2:02:45"} +{"current_steps": 2826, "total_steps": 3226, "loss": 0.7188, "learning_rate": 1.5290053353926814e-06, "epoch": 0.8759734976171103, "percentage": 87.6, "elapsed_time": "14:25:09", "remaining_time": "2:02:27"} +{"current_steps": 2827, "total_steps": 3226, "loss": 0.6953, "learning_rate": 1.5214681839631085e-06, "epoch": 0.876283467007633, "percentage": 87.63, "elapsed_time": "14:25:27", "remaining_time": "2:02:08"} +{"current_steps": 2828, "total_steps": 3226, "loss": 0.6945, "learning_rate": 1.5139489208444724e-06, "epoch": 0.8765934363981557, "percentage": 87.66, "elapsed_time": "14:25:45", "remaining_time": "2:01:50"} +{"current_steps": 2829, "total_steps": 3226, "loss": 0.7264, "learning_rate": 1.506447553315875e-06, "epoch": 0.8769034057886783, "percentage": 87.69, "elapsed_time": "14:26:04", "remaining_time": "2:01:32"} +{"current_steps": 2830, "total_steps": 3226, "loss": 0.6853, "learning_rate": 1.49896408863907e-06, "epoch": 0.8772133751792011, "percentage": 87.72, "elapsed_time": "14:26:22", "remaining_time": "2:01:13"} +{"current_steps": 2831, "total_steps": 3226, "loss": 0.7243, "learning_rate": 1.4914985340585042e-06, "epoch": 0.8775233445697237, "percentage": 87.76, "elapsed_time": "14:26:40", "remaining_time": "2:00:55"} +{"current_steps": 2832, "total_steps": 3226, "loss": 0.7134, "learning_rate": 1.4840508968012657e-06, "epoch": 0.8778333139602464, "percentage": 87.79, "elapsed_time": "14:26:59", "remaining_time": "2:00:37"} +{"current_steps": 2833, "total_steps": 3226, "loss": 0.6908, "learning_rate": 1.4766211840771162e-06, "epoch": 0.8781432833507691, "percentage": 87.82, "elapsed_time": "14:27:17", "remaining_time": "2:00:18"} +{"current_steps": 2834, "total_steps": 3226, "loss": 0.7073, "learning_rate": 1.4692094030784577e-06, "epoch": 0.8784532527412918, "percentage": 87.85, "elapsed_time": "14:27:35", "remaining_time": "2:00:00"} +{"current_steps": 2835, "total_steps": 3226, "loss": 0.6717, "learning_rate": 1.4618155609803198e-06, "epoch": 0.8787632221318145, "percentage": 87.88, "elapsed_time": "14:27:54", "remaining_time": "1:59:42"} +{"current_steps": 2836, "total_steps": 3226, "loss": 0.7083, "learning_rate": 1.4544396649403924e-06, "epoch": 0.8790731915223372, "percentage": 87.91, "elapsed_time": "14:28:12", "remaining_time": "1:59:23"} +{"current_steps": 2837, "total_steps": 3226, "loss": 0.6944, "learning_rate": 1.4470817220989687e-06, "epoch": 0.8793831609128598, "percentage": 87.94, "elapsed_time": "14:28:30", "remaining_time": "1:59:05"} +{"current_steps": 2838, "total_steps": 3226, "loss": 0.7248, "learning_rate": 1.4397417395789793e-06, "epoch": 0.8796931303033826, "percentage": 87.97, "elapsed_time": "14:28:49", "remaining_time": "1:58:46"} +{"current_steps": 2839, "total_steps": 3226, "loss": 0.7148, "learning_rate": 1.4324197244859583e-06, "epoch": 0.8800030996939052, "percentage": 88.0, "elapsed_time": "14:29:07", "remaining_time": "1:58:28"} +{"current_steps": 2840, "total_steps": 3226, "loss": 0.7304, "learning_rate": 1.4251156839080493e-06, "epoch": 0.880313069084428, "percentage": 88.03, "elapsed_time": "14:29:25", "remaining_time": "1:58:10"} +{"current_steps": 2841, "total_steps": 3226, "loss": 0.7155, "learning_rate": 1.4178296249159961e-06, "epoch": 0.8806230384749506, "percentage": 88.07, "elapsed_time": "14:29:44", "remaining_time": "1:57:51"} +{"current_steps": 2842, "total_steps": 3226, "loss": 0.6605, "learning_rate": 1.4105615545631346e-06, "epoch": 0.8809330078654732, "percentage": 88.1, "elapsed_time": "14:30:02", "remaining_time": "1:57:33"} +{"current_steps": 2843, "total_steps": 3226, "loss": 0.6784, "learning_rate": 1.403311479885383e-06, "epoch": 0.881242977255996, "percentage": 88.13, "elapsed_time": "14:30:20", "remaining_time": "1:57:15"} +{"current_steps": 2844, "total_steps": 3226, "loss": 0.6841, "learning_rate": 1.3960794079012452e-06, "epoch": 0.8815529466465186, "percentage": 88.16, "elapsed_time": "14:30:38", "remaining_time": "1:56:56"} +{"current_steps": 2845, "total_steps": 3226, "loss": 0.702, "learning_rate": 1.388865345611794e-06, "epoch": 0.8818629160370414, "percentage": 88.19, "elapsed_time": "14:30:57", "remaining_time": "1:56:38"} +{"current_steps": 2846, "total_steps": 3226, "loss": 0.6915, "learning_rate": 1.3816693000006699e-06, "epoch": 0.882172885427564, "percentage": 88.22, "elapsed_time": "14:31:15", "remaining_time": "1:56:19"} +{"current_steps": 2847, "total_steps": 3226, "loss": 0.7054, "learning_rate": 1.3744912780340648e-06, "epoch": 0.8824828548180867, "percentage": 88.25, "elapsed_time": "14:31:33", "remaining_time": "1:56:01"} +{"current_steps": 2848, "total_steps": 3226, "loss": 0.7215, "learning_rate": 1.3673312866607336e-06, "epoch": 0.8827928242086094, "percentage": 88.28, "elapsed_time": "14:31:52", "remaining_time": "1:55:43"} +{"current_steps": 2849, "total_steps": 3226, "loss": 0.7218, "learning_rate": 1.3601893328119674e-06, "epoch": 0.8831027935991321, "percentage": 88.31, "elapsed_time": "14:32:10", "remaining_time": "1:55:24"} +{"current_steps": 2850, "total_steps": 3226, "loss": 0.6796, "learning_rate": 1.353065423401605e-06, "epoch": 0.8834127629896548, "percentage": 88.34, "elapsed_time": "14:32:28", "remaining_time": "1:55:06"} +{"current_steps": 2851, "total_steps": 3226, "loss": 0.7452, "learning_rate": 1.3459595653260027e-06, "epoch": 0.8837227323801775, "percentage": 88.38, "elapsed_time": "14:32:47", "remaining_time": "1:54:47"} +{"current_steps": 2852, "total_steps": 3226, "loss": 0.7273, "learning_rate": 1.3388717654640626e-06, "epoch": 0.8840327017707001, "percentage": 88.41, "elapsed_time": "14:33:05", "remaining_time": "1:54:29"} +{"current_steps": 2853, "total_steps": 3226, "loss": 0.6897, "learning_rate": 1.3318020306771851e-06, "epoch": 0.8843426711612228, "percentage": 88.44, "elapsed_time": "14:33:23", "remaining_time": "1:54:11"} +{"current_steps": 2854, "total_steps": 3226, "loss": 0.686, "learning_rate": 1.324750367809291e-06, "epoch": 0.8846526405517455, "percentage": 88.47, "elapsed_time": "14:33:42", "remaining_time": "1:53:52"} +{"current_steps": 2855, "total_steps": 3226, "loss": 0.6851, "learning_rate": 1.3177167836868155e-06, "epoch": 0.8849626099422682, "percentage": 88.5, "elapsed_time": "14:34:00", "remaining_time": "1:53:34"} +{"current_steps": 2856, "total_steps": 3226, "loss": 0.6951, "learning_rate": 1.3107012851186718e-06, "epoch": 0.8852725793327909, "percentage": 88.53, "elapsed_time": "14:34:18", "remaining_time": "1:53:16"} +{"current_steps": 2857, "total_steps": 3226, "loss": 0.7279, "learning_rate": 1.3037038788962896e-06, "epoch": 0.8855825487233135, "percentage": 88.56, "elapsed_time": "14:34:36", "remaining_time": "1:52:57"} +{"current_steps": 2858, "total_steps": 3226, "loss": 0.7121, "learning_rate": 1.2967245717935594e-06, "epoch": 0.8858925181138363, "percentage": 88.59, "elapsed_time": "14:34:55", "remaining_time": "1:52:39"} +{"current_steps": 2859, "total_steps": 3226, "loss": 0.7259, "learning_rate": 1.2897633705668722e-06, "epoch": 0.8862024875043589, "percentage": 88.62, "elapsed_time": "14:35:13", "remaining_time": "1:52:20"} +{"current_steps": 2860, "total_steps": 3226, "loss": 0.6993, "learning_rate": 1.2828202819550839e-06, "epoch": 0.8865124568948817, "percentage": 88.65, "elapsed_time": "14:35:31", "remaining_time": "1:52:02"} +{"current_steps": 2861, "total_steps": 3226, "loss": 0.7092, "learning_rate": 1.2758953126795026e-06, "epoch": 0.8868224262854043, "percentage": 88.69, "elapsed_time": "14:35:50", "remaining_time": "1:51:44"} +{"current_steps": 2862, "total_steps": 3226, "loss": 0.699, "learning_rate": 1.2689884694439192e-06, "epoch": 0.887132395675927, "percentage": 88.72, "elapsed_time": "14:36:08", "remaining_time": "1:51:25"} +{"current_steps": 2863, "total_steps": 3226, "loss": 0.6973, "learning_rate": 1.2620997589345585e-06, "epoch": 0.8874423650664497, "percentage": 88.75, "elapsed_time": "14:36:26", "remaining_time": "1:51:07"} +{"current_steps": 2864, "total_steps": 3226, "loss": 0.6851, "learning_rate": 1.255229187820104e-06, "epoch": 0.8877523344569723, "percentage": 88.78, "elapsed_time": "14:36:45", "remaining_time": "1:50:49"} +{"current_steps": 2865, "total_steps": 3226, "loss": 0.7199, "learning_rate": 1.2483767627516752e-06, "epoch": 0.8880623038474951, "percentage": 88.81, "elapsed_time": "14:37:03", "remaining_time": "1:50:30"} +{"current_steps": 2866, "total_steps": 3226, "loss": 0.6923, "learning_rate": 1.2415424903628237e-06, "epoch": 0.8883722732380177, "percentage": 88.84, "elapsed_time": "14:37:22", "remaining_time": "1:50:12"} +{"current_steps": 2867, "total_steps": 3226, "loss": 0.7105, "learning_rate": 1.2347263772695262e-06, "epoch": 0.8886822426285405, "percentage": 88.87, "elapsed_time": "14:37:40", "remaining_time": "1:49:54"} +{"current_steps": 2868, "total_steps": 3226, "loss": 0.7344, "learning_rate": 1.2279284300701866e-06, "epoch": 0.8889922120190631, "percentage": 88.9, "elapsed_time": "14:37:58", "remaining_time": "1:49:35"} +{"current_steps": 2869, "total_steps": 3226, "loss": 0.7261, "learning_rate": 1.2211486553456164e-06, "epoch": 0.8893021814095858, "percentage": 88.93, "elapsed_time": "14:38:17", "remaining_time": "1:49:17"} +{"current_steps": 2870, "total_steps": 3226, "loss": 0.708, "learning_rate": 1.2143870596590413e-06, "epoch": 0.8896121508001085, "percentage": 88.96, "elapsed_time": "14:38:35", "remaining_time": "1:48:58"} +{"current_steps": 2871, "total_steps": 3226, "loss": 0.6776, "learning_rate": 1.2076436495560828e-06, "epoch": 0.8899221201906312, "percentage": 89.0, "elapsed_time": "14:38:53", "remaining_time": "1:48:40"} +{"current_steps": 2872, "total_steps": 3226, "loss": 0.726, "learning_rate": 1.2009184315647637e-06, "epoch": 0.8902320895811539, "percentage": 89.03, "elapsed_time": "14:39:12", "remaining_time": "1:48:22"} +{"current_steps": 2873, "total_steps": 3226, "loss": 0.6913, "learning_rate": 1.1942114121954895e-06, "epoch": 0.8905420589716766, "percentage": 89.06, "elapsed_time": "14:39:30", "remaining_time": "1:48:03"} +{"current_steps": 2874, "total_steps": 3226, "loss": 0.6957, "learning_rate": 1.1875225979410532e-06, "epoch": 0.8908520283621992, "percentage": 89.09, "elapsed_time": "14:39:48", "remaining_time": "1:47:45"} +{"current_steps": 2875, "total_steps": 3226, "loss": 0.6908, "learning_rate": 1.1808519952766217e-06, "epoch": 0.8911619977527219, "percentage": 89.12, "elapsed_time": "14:40:07", "remaining_time": "1:47:27"} +{"current_steps": 2876, "total_steps": 3226, "loss": 0.7075, "learning_rate": 1.174199610659732e-06, "epoch": 0.8914719671432446, "percentage": 89.15, "elapsed_time": "14:40:25", "remaining_time": "1:47:08"} +{"current_steps": 2877, "total_steps": 3226, "loss": 0.7162, "learning_rate": 1.1675654505302836e-06, "epoch": 0.8917819365337672, "percentage": 89.18, "elapsed_time": "14:40:43", "remaining_time": "1:46:50"} +{"current_steps": 2878, "total_steps": 3226, "loss": 0.7043, "learning_rate": 1.1609495213105438e-06, "epoch": 0.89209190592429, "percentage": 89.21, "elapsed_time": "14:41:02", "remaining_time": "1:46:31"} +{"current_steps": 2879, "total_steps": 3226, "loss": 0.7151, "learning_rate": 1.1543518294051115e-06, "epoch": 0.8924018753148126, "percentage": 89.24, "elapsed_time": "14:41:20", "remaining_time": "1:46:13"} +{"current_steps": 2880, "total_steps": 3226, "loss": 0.7255, "learning_rate": 1.1477723812009534e-06, "epoch": 0.8927118447053354, "percentage": 89.27, "elapsed_time": "14:41:38", "remaining_time": "1:45:55"} +{"current_steps": 2881, "total_steps": 3226, "loss": 0.7085, "learning_rate": 1.1412111830673588e-06, "epoch": 0.893021814095858, "percentage": 89.31, "elapsed_time": "14:41:56", "remaining_time": "1:45:36"} +{"current_steps": 2882, "total_steps": 3226, "loss": 0.6873, "learning_rate": 1.1346682413559518e-06, "epoch": 0.8933317834863808, "percentage": 89.34, "elapsed_time": "14:42:15", "remaining_time": "1:45:18"} +{"current_steps": 2883, "total_steps": 3226, "loss": 0.7244, "learning_rate": 1.1281435624006964e-06, "epoch": 0.8936417528769034, "percentage": 89.37, "elapsed_time": "14:42:33", "remaining_time": "1:45:00"} +{"current_steps": 2884, "total_steps": 3226, "loss": 0.7339, "learning_rate": 1.121637152517856e-06, "epoch": 0.8939517222674261, "percentage": 89.4, "elapsed_time": "14:42:51", "remaining_time": "1:44:41"} +{"current_steps": 2885, "total_steps": 3226, "loss": 0.7022, "learning_rate": 1.1151490180060276e-06, "epoch": 0.8942616916579488, "percentage": 89.43, "elapsed_time": "14:43:10", "remaining_time": "1:44:23"} +{"current_steps": 2886, "total_steps": 3226, "loss": 0.6919, "learning_rate": 1.108679165146107e-06, "epoch": 0.8945716610484714, "percentage": 89.46, "elapsed_time": "14:43:28", "remaining_time": "1:44:04"} +{"current_steps": 2887, "total_steps": 3226, "loss": 0.6937, "learning_rate": 1.1022276002012933e-06, "epoch": 0.8948816304389942, "percentage": 89.49, "elapsed_time": "14:43:47", "remaining_time": "1:43:46"} +{"current_steps": 2888, "total_steps": 3226, "loss": 0.7154, "learning_rate": 1.0957943294170882e-06, "epoch": 0.8951915998295168, "percentage": 89.52, "elapsed_time": "14:44:05", "remaining_time": "1:43:28"} +{"current_steps": 2889, "total_steps": 3226, "loss": 0.7191, "learning_rate": 1.0893793590212653e-06, "epoch": 0.8955015692200395, "percentage": 89.55, "elapsed_time": "14:44:23", "remaining_time": "1:43:09"} +{"current_steps": 2890, "total_steps": 3226, "loss": 0.6832, "learning_rate": 1.0829826952239086e-06, "epoch": 0.8958115386105622, "percentage": 89.58, "elapsed_time": "14:44:42", "remaining_time": "1:42:51"} +{"current_steps": 2891, "total_steps": 3226, "loss": 0.7222, "learning_rate": 1.0766043442173578e-06, "epoch": 0.8961215080010849, "percentage": 89.62, "elapsed_time": "14:45:00", "remaining_time": "1:42:33"} +{"current_steps": 2892, "total_steps": 3226, "loss": 0.6913, "learning_rate": 1.0702443121762406e-06, "epoch": 0.8964314773916076, "percentage": 89.65, "elapsed_time": "14:45:18", "remaining_time": "1:42:14"} +{"current_steps": 2893, "total_steps": 3226, "loss": 0.721, "learning_rate": 1.0639026052574386e-06, "epoch": 0.8967414467821303, "percentage": 89.68, "elapsed_time": "14:45:36", "remaining_time": "1:41:56"} +{"current_steps": 2894, "total_steps": 3226, "loss": 0.7014, "learning_rate": 1.0575792296000987e-06, "epoch": 0.8970514161726529, "percentage": 89.71, "elapsed_time": "14:45:55", "remaining_time": "1:41:37"} +{"current_steps": 2895, "total_steps": 3226, "loss": 0.6999, "learning_rate": 1.0512741913256264e-06, "epoch": 0.8973613855631757, "percentage": 89.74, "elapsed_time": "14:46:13", "remaining_time": "1:41:19"} +{"current_steps": 2896, "total_steps": 3226, "loss": 0.7084, "learning_rate": 1.0449874965376683e-06, "epoch": 0.8976713549536983, "percentage": 89.77, "elapsed_time": "14:46:31", "remaining_time": "1:41:01"} +{"current_steps": 2897, "total_steps": 3226, "loss": 0.7067, "learning_rate": 1.0387191513221184e-06, "epoch": 0.897981324344221, "percentage": 89.8, "elapsed_time": "14:46:50", "remaining_time": "1:40:42"} +{"current_steps": 2898, "total_steps": 3226, "loss": 0.7083, "learning_rate": 1.0324691617471005e-06, "epoch": 0.8982912937347437, "percentage": 89.83, "elapsed_time": "14:47:08", "remaining_time": "1:40:24"} +{"current_steps": 2899, "total_steps": 3226, "loss": 0.7047, "learning_rate": 1.0262375338629837e-06, "epoch": 0.8986012631252663, "percentage": 89.86, "elapsed_time": "14:47:26", "remaining_time": "1:40:06"} +{"current_steps": 2900, "total_steps": 3226, "loss": 0.7181, "learning_rate": 1.0200242737023447e-06, "epoch": 0.8989112325157891, "percentage": 89.89, "elapsed_time": "14:47:45", "remaining_time": "1:39:47"} +{"current_steps": 2901, "total_steps": 3226, "loss": 0.7069, "learning_rate": 1.0138293872799875e-06, "epoch": 0.8992212019063117, "percentage": 89.93, "elapsed_time": "14:48:03", "remaining_time": "1:39:29"} +{"current_steps": 2902, "total_steps": 3226, "loss": 0.7091, "learning_rate": 1.0076528805929265e-06, "epoch": 0.8995311712968345, "percentage": 89.96, "elapsed_time": "14:48:21", "remaining_time": "1:39:10"} +{"current_steps": 2903, "total_steps": 3226, "loss": 0.6999, "learning_rate": 1.0014947596203873e-06, "epoch": 0.8998411406873571, "percentage": 89.99, "elapsed_time": "14:48:40", "remaining_time": "1:38:52"} +{"current_steps": 2904, "total_steps": 3226, "loss": 0.7202, "learning_rate": 9.95355030323799e-07, "epoch": 0.9001511100778798, "percentage": 90.02, "elapsed_time": "14:48:58", "remaining_time": "1:38:34"} +{"current_steps": 2905, "total_steps": 3226, "loss": 0.7057, "learning_rate": 9.892336986467743e-07, "epoch": 0.9004610794684025, "percentage": 90.05, "elapsed_time": "14:49:16", "remaining_time": "1:38:15"} +{"current_steps": 2906, "total_steps": 3226, "loss": 0.688, "learning_rate": 9.831307705151328e-07, "epoch": 0.9007710488589252, "percentage": 90.08, "elapsed_time": "14:49:34", "remaining_time": "1:37:57"} +{"current_steps": 2907, "total_steps": 3226, "loss": 0.6668, "learning_rate": 9.77046251836864e-07, "epoch": 0.9010810182494479, "percentage": 90.11, "elapsed_time": "14:49:53", "remaining_time": "1:37:39"} +{"current_steps": 2908, "total_steps": 3226, "loss": 0.7133, "learning_rate": 9.709801485021386e-07, "epoch": 0.9013909876399705, "percentage": 90.14, "elapsed_time": "14:50:11", "remaining_time": "1:37:20"} +{"current_steps": 2909, "total_steps": 3226, "loss": 0.7136, "learning_rate": 9.64932466383315e-07, "epoch": 0.9017009570304932, "percentage": 90.17, "elapsed_time": "14:50:29", "remaining_time": "1:37:02"} +{"current_steps": 2910, "total_steps": 3226, "loss": 0.7001, "learning_rate": 9.589032113348918e-07, "epoch": 0.9020109264210159, "percentage": 90.2, "elapsed_time": "14:50:48", "remaining_time": "1:36:44"} +{"current_steps": 2911, "total_steps": 3226, "loss": 0.6933, "learning_rate": 9.52892389193556e-07, "epoch": 0.9023208958115386, "percentage": 90.24, "elapsed_time": "14:51:06", "remaining_time": "1:36:25"} +{"current_steps": 2912, "total_steps": 3226, "loss": 0.6942, "learning_rate": 9.46900005778133e-07, "epoch": 0.9026308652020613, "percentage": 90.27, "elapsed_time": "14:51:24", "remaining_time": "1:36:07"} +{"current_steps": 2913, "total_steps": 3226, "loss": 0.7148, "learning_rate": 9.409260668896048e-07, "epoch": 0.902940834592584, "percentage": 90.3, "elapsed_time": "14:51:43", "remaining_time": "1:35:48"} +{"current_steps": 2914, "total_steps": 3226, "loss": 0.7319, "learning_rate": 9.34970578311103e-07, "epoch": 0.9032508039831066, "percentage": 90.33, "elapsed_time": "14:52:01", "remaining_time": "1:35:30"} +{"current_steps": 2915, "total_steps": 3226, "loss": 0.6889, "learning_rate": 9.290335458078803e-07, "epoch": 0.9035607733736294, "percentage": 90.36, "elapsed_time": "14:52:19", "remaining_time": "1:35:12"} +{"current_steps": 2916, "total_steps": 3226, "loss": 0.6914, "learning_rate": 9.23114975127346e-07, "epoch": 0.903870742764152, "percentage": 90.39, "elapsed_time": "14:52:38", "remaining_time": "1:34:53"} +{"current_steps": 2917, "total_steps": 3226, "loss": 0.705, "learning_rate": 9.172148719990237e-07, "epoch": 0.9041807121546748, "percentage": 90.42, "elapsed_time": "14:52:56", "remaining_time": "1:34:35"} +{"current_steps": 2918, "total_steps": 3226, "loss": 0.6993, "learning_rate": 9.1133324213456e-07, "epoch": 0.9044906815451974, "percentage": 90.45, "elapsed_time": "14:53:14", "remaining_time": "1:34:17"} +{"current_steps": 2919, "total_steps": 3226, "loss": 0.7078, "learning_rate": 9.054700912277203e-07, "epoch": 0.9048006509357202, "percentage": 90.48, "elapsed_time": "14:53:32", "remaining_time": "1:33:58"} +{"current_steps": 2920, "total_steps": 3226, "loss": 0.6904, "learning_rate": 8.996254249543823e-07, "epoch": 0.9051106203262428, "percentage": 90.51, "elapsed_time": "14:53:51", "remaining_time": "1:33:40"} +{"current_steps": 2921, "total_steps": 3226, "loss": 0.7808, "learning_rate": 8.937992489725289e-07, "epoch": 0.9054205897167654, "percentage": 90.55, "elapsed_time": "14:54:09", "remaining_time": "1:33:21"} +{"current_steps": 2922, "total_steps": 3226, "loss": 0.7286, "learning_rate": 8.879915689222418e-07, "epoch": 0.9057305591072882, "percentage": 90.58, "elapsed_time": "14:54:27", "remaining_time": "1:33:03"} +{"current_steps": 2923, "total_steps": 3226, "loss": 0.6957, "learning_rate": 8.822023904256994e-07, "epoch": 0.9060405284978108, "percentage": 90.61, "elapsed_time": "14:54:46", "remaining_time": "1:32:45"} +{"current_steps": 2924, "total_steps": 3226, "loss": 0.7163, "learning_rate": 8.764317190871652e-07, "epoch": 0.9063504978883336, "percentage": 90.64, "elapsed_time": "14:55:04", "remaining_time": "1:32:26"} +{"current_steps": 2925, "total_steps": 3226, "loss": 0.7043, "learning_rate": 8.706795604929974e-07, "epoch": 0.9066604672788562, "percentage": 90.67, "elapsed_time": "14:55:22", "remaining_time": "1:32:08"} +{"current_steps": 2926, "total_steps": 3226, "loss": 0.701, "learning_rate": 8.649459202116195e-07, "epoch": 0.9069704366693789, "percentage": 90.7, "elapsed_time": "14:55:40", "remaining_time": "1:31:50"} +{"current_steps": 2927, "total_steps": 3226, "loss": 0.7064, "learning_rate": 8.592308037935359e-07, "epoch": 0.9072804060599016, "percentage": 90.73, "elapsed_time": "14:55:59", "remaining_time": "1:31:31"} +{"current_steps": 2928, "total_steps": 3226, "loss": 0.7028, "learning_rate": 8.535342167713168e-07, "epoch": 0.9075903754504243, "percentage": 90.76, "elapsed_time": "14:56:17", "remaining_time": "1:31:13"} +{"current_steps": 2929, "total_steps": 3226, "loss": 0.687, "learning_rate": 8.478561646595907e-07, "epoch": 0.907900344840947, "percentage": 90.79, "elapsed_time": "14:56:35", "remaining_time": "1:30:54"} +{"current_steps": 2930, "total_steps": 3226, "loss": 0.726, "learning_rate": 8.421966529550607e-07, "epoch": 0.9082103142314697, "percentage": 90.82, "elapsed_time": "14:56:54", "remaining_time": "1:30:36"} +{"current_steps": 2931, "total_steps": 3226, "loss": 0.7283, "learning_rate": 8.365556871364511e-07, "epoch": 0.9085202836219923, "percentage": 90.86, "elapsed_time": "14:57:12", "remaining_time": "1:30:18"} +{"current_steps": 2932, "total_steps": 3226, "loss": 0.7164, "learning_rate": 8.30933272664567e-07, "epoch": 0.908830253012515, "percentage": 90.89, "elapsed_time": "14:57:30", "remaining_time": "1:29:59"} +{"current_steps": 2933, "total_steps": 3226, "loss": 0.6678, "learning_rate": 8.253294149822277e-07, "epoch": 0.9091402224030377, "percentage": 90.92, "elapsed_time": "14:57:49", "remaining_time": "1:29:41"} +{"current_steps": 2934, "total_steps": 3226, "loss": 0.7289, "learning_rate": 8.197441195142963e-07, "epoch": 0.9094501917935603, "percentage": 90.95, "elapsed_time": "14:58:07", "remaining_time": "1:29:23"} +{"current_steps": 2935, "total_steps": 3226, "loss": 0.7055, "learning_rate": 8.141773916676809e-07, "epoch": 0.9097601611840831, "percentage": 90.98, "elapsed_time": "14:58:25", "remaining_time": "1:29:04"} +{"current_steps": 2936, "total_steps": 3226, "loss": 0.7139, "learning_rate": 8.086292368312909e-07, "epoch": 0.9100701305746057, "percentage": 91.01, "elapsed_time": "14:58:44", "remaining_time": "1:28:46"} +{"current_steps": 2937, "total_steps": 3226, "loss": 0.6939, "learning_rate": 8.030996603760744e-07, "epoch": 0.9103800999651285, "percentage": 91.04, "elapsed_time": "14:59:02", "remaining_time": "1:28:27"} +{"current_steps": 2938, "total_steps": 3226, "loss": 0.6755, "learning_rate": 7.975886676549871e-07, "epoch": 0.9106900693556511, "percentage": 91.07, "elapsed_time": "14:59:20", "remaining_time": "1:28:09"} +{"current_steps": 2939, "total_steps": 3226, "loss": 0.6929, "learning_rate": 7.92096264002995e-07, "epoch": 0.9110000387461739, "percentage": 91.1, "elapsed_time": "14:59:39", "remaining_time": "1:27:51"} +{"current_steps": 2940, "total_steps": 3226, "loss": 0.7124, "learning_rate": 7.866224547370716e-07, "epoch": 0.9113100081366965, "percentage": 91.13, "elapsed_time": "14:59:57", "remaining_time": "1:27:32"} +{"current_steps": 2941, "total_steps": 3226, "loss": 0.7429, "learning_rate": 7.811672451561847e-07, "epoch": 0.9116199775272192, "percentage": 91.17, "elapsed_time": "15:00:15", "remaining_time": "1:27:14"} +{"current_steps": 2942, "total_steps": 3226, "loss": 0.6826, "learning_rate": 7.757306405413012e-07, "epoch": 0.9119299469177419, "percentage": 91.2, "elapsed_time": "15:00:33", "remaining_time": "1:26:56"} +{"current_steps": 2943, "total_steps": 3226, "loss": 0.7222, "learning_rate": 7.703126461553756e-07, "epoch": 0.9122399163082645, "percentage": 91.23, "elapsed_time": "15:00:52", "remaining_time": "1:26:37"} +{"current_steps": 2944, "total_steps": 3226, "loss": 0.7133, "learning_rate": 7.649132672433457e-07, "epoch": 0.9125498856987873, "percentage": 91.26, "elapsed_time": "15:01:10", "remaining_time": "1:26:19"} +{"current_steps": 2945, "total_steps": 3226, "loss": 0.7016, "learning_rate": 7.595325090321304e-07, "epoch": 0.9128598550893099, "percentage": 91.29, "elapsed_time": "15:01:28", "remaining_time": "1:26:00"} +{"current_steps": 2946, "total_steps": 3226, "loss": 0.7195, "learning_rate": 7.54170376730623e-07, "epoch": 0.9131698244798326, "percentage": 91.32, "elapsed_time": "15:01:47", "remaining_time": "1:25:42"} +{"current_steps": 2947, "total_steps": 3226, "loss": 0.7118, "learning_rate": 7.488268755296823e-07, "epoch": 0.9134797938703553, "percentage": 91.35, "elapsed_time": "15:02:05", "remaining_time": "1:25:24"} +{"current_steps": 2948, "total_steps": 3226, "loss": 0.7493, "learning_rate": 7.435020106021329e-07, "epoch": 0.913789763260878, "percentage": 91.38, "elapsed_time": "15:02:23", "remaining_time": "1:25:05"} +{"current_steps": 2949, "total_steps": 3226, "loss": 0.7014, "learning_rate": 7.381957871027623e-07, "epoch": 0.9140997326514007, "percentage": 91.41, "elapsed_time": "15:02:42", "remaining_time": "1:24:47"} +{"current_steps": 2950, "total_steps": 3226, "loss": 0.6906, "learning_rate": 7.329082101683038e-07, "epoch": 0.9144097020419234, "percentage": 91.44, "elapsed_time": "15:03:00", "remaining_time": "1:24:29"} +{"current_steps": 2951, "total_steps": 3226, "loss": 0.7221, "learning_rate": 7.276392849174473e-07, "epoch": 0.914719671432446, "percentage": 91.48, "elapsed_time": "15:03:18", "remaining_time": "1:24:10"} +{"current_steps": 2952, "total_steps": 3226, "loss": 0.6929, "learning_rate": 7.22389016450824e-07, "epoch": 0.9150296408229688, "percentage": 91.51, "elapsed_time": "15:03:37", "remaining_time": "1:23:52"} +{"current_steps": 2953, "total_steps": 3226, "loss": 0.6812, "learning_rate": 7.171574098510015e-07, "epoch": 0.9153396102134914, "percentage": 91.54, "elapsed_time": "15:03:55", "remaining_time": "1:23:33"} +{"current_steps": 2954, "total_steps": 3226, "loss": 0.7042, "learning_rate": 7.119444701824885e-07, "epoch": 0.915649579604014, "percentage": 91.57, "elapsed_time": "15:04:13", "remaining_time": "1:23:15"} +{"current_steps": 2955, "total_steps": 3226, "loss": 0.7325, "learning_rate": 7.067502024917106e-07, "epoch": 0.9159595489945368, "percentage": 91.6, "elapsed_time": "15:04:32", "remaining_time": "1:22:57"} +{"current_steps": 2956, "total_steps": 3226, "loss": 0.7032, "learning_rate": 7.015746118070388e-07, "epoch": 0.9162695183850594, "percentage": 91.63, "elapsed_time": "15:04:50", "remaining_time": "1:22:38"} +{"current_steps": 2957, "total_steps": 3226, "loss": 0.6946, "learning_rate": 6.964177031387387e-07, "epoch": 0.9165794877755822, "percentage": 91.66, "elapsed_time": "15:05:08", "remaining_time": "1:22:20"} +{"current_steps": 2958, "total_steps": 3226, "loss": 0.6804, "learning_rate": 6.912794814790102e-07, "epoch": 0.9168894571661048, "percentage": 91.69, "elapsed_time": "15:05:27", "remaining_time": "1:22:02"} +{"current_steps": 2959, "total_steps": 3226, "loss": 0.6865, "learning_rate": 6.861599518019501e-07, "epoch": 0.9171994265566276, "percentage": 91.72, "elapsed_time": "15:05:45", "remaining_time": "1:21:43"} +{"current_steps": 2960, "total_steps": 3226, "loss": 0.7001, "learning_rate": 6.810591190635696e-07, "epoch": 0.9175093959471502, "percentage": 91.75, "elapsed_time": "15:06:03", "remaining_time": "1:21:25"} +{"current_steps": 2961, "total_steps": 3226, "loss": 0.7249, "learning_rate": 6.759769882017764e-07, "epoch": 0.9178193653376729, "percentage": 91.79, "elapsed_time": "15:06:22", "remaining_time": "1:21:07"} +{"current_steps": 2962, "total_steps": 3226, "loss": 0.7354, "learning_rate": 6.709135641363685e-07, "epoch": 0.9181293347281956, "percentage": 91.82, "elapsed_time": "15:06:40", "remaining_time": "1:20:48"} +{"current_steps": 2963, "total_steps": 3226, "loss": 0.7024, "learning_rate": 6.658688517690493e-07, "epoch": 0.9184393041187183, "percentage": 91.85, "elapsed_time": "15:06:58", "remaining_time": "1:20:30"} +{"current_steps": 2964, "total_steps": 3226, "loss": 0.7269, "learning_rate": 6.608428559833879e-07, "epoch": 0.918749273509241, "percentage": 91.88, "elapsed_time": "15:07:16", "remaining_time": "1:20:11"} +{"current_steps": 2965, "total_steps": 3226, "loss": 0.6782, "learning_rate": 6.558355816448502e-07, "epoch": 0.9190592428997636, "percentage": 91.91, "elapsed_time": "15:07:35", "remaining_time": "1:19:53"} +{"current_steps": 2966, "total_steps": 3226, "loss": 0.7025, "learning_rate": 6.508470336007744e-07, "epoch": 0.9193692122902863, "percentage": 91.94, "elapsed_time": "15:07:53", "remaining_time": "1:19:35"} +{"current_steps": 2967, "total_steps": 3226, "loss": 0.7138, "learning_rate": 6.458772166803706e-07, "epoch": 0.919679181680809, "percentage": 91.97, "elapsed_time": "15:08:11", "remaining_time": "1:19:16"} +{"current_steps": 2968, "total_steps": 3226, "loss": 0.712, "learning_rate": 6.409261356947105e-07, "epoch": 0.9199891510713317, "percentage": 92.0, "elapsed_time": "15:08:30", "remaining_time": "1:18:58"} +{"current_steps": 2969, "total_steps": 3226, "loss": 0.6868, "learning_rate": 6.359937954367379e-07, "epoch": 0.9202991204618544, "percentage": 92.03, "elapsed_time": "15:08:48", "remaining_time": "1:18:40"} +{"current_steps": 2970, "total_steps": 3226, "loss": 0.7037, "learning_rate": 6.310802006812488e-07, "epoch": 0.9206090898523771, "percentage": 92.06, "elapsed_time": "15:09:06", "remaining_time": "1:18:21"} +{"current_steps": 2971, "total_steps": 3226, "loss": 0.7068, "learning_rate": 6.261853561848918e-07, "epoch": 0.9209190592428997, "percentage": 92.1, "elapsed_time": "15:09:25", "remaining_time": "1:18:03"} +{"current_steps": 2972, "total_steps": 3226, "loss": 0.7082, "learning_rate": 6.213092666861676e-07, "epoch": 0.9212290286334225, "percentage": 92.13, "elapsed_time": "15:09:43", "remaining_time": "1:17:44"} +{"current_steps": 2973, "total_steps": 3226, "loss": 0.7005, "learning_rate": 6.164519369054156e-07, "epoch": 0.9215389980239451, "percentage": 92.16, "elapsed_time": "15:10:01", "remaining_time": "1:17:26"} +{"current_steps": 2974, "total_steps": 3226, "loss": 0.7327, "learning_rate": 6.116133715448213e-07, "epoch": 0.9218489674144679, "percentage": 92.19, "elapsed_time": "15:10:20", "remaining_time": "1:17:08"} +{"current_steps": 2975, "total_steps": 3226, "loss": 0.6827, "learning_rate": 6.067935752884025e-07, "epoch": 0.9221589368049905, "percentage": 92.22, "elapsed_time": "15:10:38", "remaining_time": "1:16:49"} +{"current_steps": 2976, "total_steps": 3226, "loss": 0.6879, "learning_rate": 6.019925528020044e-07, "epoch": 0.9224689061955131, "percentage": 92.25, "elapsed_time": "15:10:56", "remaining_time": "1:16:31"} +{"current_steps": 2977, "total_steps": 3226, "loss": 0.7061, "learning_rate": 5.972103087333003e-07, "epoch": 0.9227788755860359, "percentage": 92.28, "elapsed_time": "15:11:15", "remaining_time": "1:16:13"} +{"current_steps": 2978, "total_steps": 3226, "loss": 0.697, "learning_rate": 5.924468477117851e-07, "epoch": 0.9230888449765585, "percentage": 92.31, "elapsed_time": "15:11:33", "remaining_time": "1:15:54"} +{"current_steps": 2979, "total_steps": 3226, "loss": 0.7158, "learning_rate": 5.877021743487766e-07, "epoch": 0.9233988143670813, "percentage": 92.34, "elapsed_time": "15:11:51", "remaining_time": "1:15:36"} +{"current_steps": 2980, "total_steps": 3226, "loss": 0.7028, "learning_rate": 5.829762932373917e-07, "epoch": 0.9237087837576039, "percentage": 92.37, "elapsed_time": "15:12:10", "remaining_time": "1:15:17"} +{"current_steps": 2981, "total_steps": 3226, "loss": 0.7126, "learning_rate": 5.782692089525643e-07, "epoch": 0.9240187531481266, "percentage": 92.41, "elapsed_time": "15:12:28", "remaining_time": "1:14:59"} +{"current_steps": 2982, "total_steps": 3226, "loss": 0.7195, "learning_rate": 5.735809260510339e-07, "epoch": 0.9243287225386493, "percentage": 92.44, "elapsed_time": "15:12:46", "remaining_time": "1:14:41"} +{"current_steps": 2983, "total_steps": 3226, "loss": 0.7059, "learning_rate": 5.689114490713277e-07, "epoch": 0.924638691929172, "percentage": 92.47, "elapsed_time": "15:13:05", "remaining_time": "1:14:22"} +{"current_steps": 2984, "total_steps": 3226, "loss": 0.7361, "learning_rate": 5.642607825337853e-07, "epoch": 0.9249486613196947, "percentage": 92.5, "elapsed_time": "15:13:23", "remaining_time": "1:14:04"} +{"current_steps": 2985, "total_steps": 3226, "loss": 0.716, "learning_rate": 5.596289309405189e-07, "epoch": 0.9252586307102174, "percentage": 92.53, "elapsed_time": "15:13:41", "remaining_time": "1:13:46"} +{"current_steps": 2986, "total_steps": 3226, "loss": 0.6876, "learning_rate": 5.550158987754372e-07, "epoch": 0.92556860010074, "percentage": 92.56, "elapsed_time": "15:14:00", "remaining_time": "1:13:27"} +{"current_steps": 2987, "total_steps": 3226, "loss": 0.7071, "learning_rate": 5.504216905042325e-07, "epoch": 0.9258785694912628, "percentage": 92.59, "elapsed_time": "15:14:18", "remaining_time": "1:13:09"} +{"current_steps": 2988, "total_steps": 3226, "loss": 0.7359, "learning_rate": 5.458463105743605e-07, "epoch": 0.9261885388817854, "percentage": 92.62, "elapsed_time": "15:14:36", "remaining_time": "1:12:51"} +{"current_steps": 2989, "total_steps": 3226, "loss": 0.7173, "learning_rate": 5.412897634150694e-07, "epoch": 0.9264985082723081, "percentage": 92.65, "elapsed_time": "15:14:55", "remaining_time": "1:12:32"} +{"current_steps": 2990, "total_steps": 3226, "loss": 0.687, "learning_rate": 5.367520534373571e-07, "epoch": 0.9268084776628308, "percentage": 92.68, "elapsed_time": "15:15:13", "remaining_time": "1:12:14"} +{"current_steps": 2991, "total_steps": 3226, "loss": 0.7012, "learning_rate": 5.32233185033999e-07, "epoch": 0.9271184470533534, "percentage": 92.72, "elapsed_time": "15:15:31", "remaining_time": "1:11:55"} +{"current_steps": 2992, "total_steps": 3226, "loss": 0.7206, "learning_rate": 5.27733162579529e-07, "epoch": 0.9274284164438762, "percentage": 92.75, "elapsed_time": "15:15:50", "remaining_time": "1:11:37"} +{"current_steps": 2993, "total_steps": 3226, "loss": 0.6782, "learning_rate": 5.232519904302336e-07, "epoch": 0.9277383858343988, "percentage": 92.78, "elapsed_time": "15:16:08", "remaining_time": "1:11:19"} +{"current_steps": 2994, "total_steps": 3226, "loss": 0.7245, "learning_rate": 5.187896729241515e-07, "epoch": 0.9280483552249216, "percentage": 92.81, "elapsed_time": "15:16:26", "remaining_time": "1:11:00"} +{"current_steps": 2995, "total_steps": 3226, "loss": 0.7085, "learning_rate": 5.143462143810696e-07, "epoch": 0.9283583246154442, "percentage": 92.84, "elapsed_time": "15:16:45", "remaining_time": "1:10:42"} +{"current_steps": 2996, "total_steps": 3226, "loss": 0.7122, "learning_rate": 5.09921619102518e-07, "epoch": 0.928668294005967, "percentage": 92.87, "elapsed_time": "15:17:03", "remaining_time": "1:10:24"} +{"current_steps": 2997, "total_steps": 3226, "loss": 0.6995, "learning_rate": 5.055158913717684e-07, "epoch": 0.9289782633964896, "percentage": 92.9, "elapsed_time": "15:17:21", "remaining_time": "1:10:05"} +{"current_steps": 2998, "total_steps": 3226, "loss": 0.7346, "learning_rate": 5.011290354538223e-07, "epoch": 0.9292882327870123, "percentage": 92.93, "elapsed_time": "15:17:40", "remaining_time": "1:09:47"} +{"current_steps": 2999, "total_steps": 3226, "loss": 0.7194, "learning_rate": 4.967610555954206e-07, "epoch": 0.929598202177535, "percentage": 92.96, "elapsed_time": "15:17:58", "remaining_time": "1:09:28"} +{"current_steps": 3000, "total_steps": 3226, "loss": 0.7066, "learning_rate": 4.924119560250207e-07, "epoch": 0.9299081715680576, "percentage": 92.99, "elapsed_time": "15:18:16", "remaining_time": "1:09:10"} +{"current_steps": 3001, "total_steps": 3226, "loss": 0.7017, "learning_rate": 4.880817409528105e-07, "epoch": 0.9302181409585804, "percentage": 93.03, "elapsed_time": "15:19:02", "remaining_time": "1:08:54"} +{"current_steps": 3002, "total_steps": 3226, "loss": 0.7098, "learning_rate": 4.837704145706946e-07, "epoch": 0.930528110349103, "percentage": 93.06, "elapsed_time": "15:19:20", "remaining_time": "1:08:35"} +{"current_steps": 3003, "total_steps": 3226, "loss": 0.7011, "learning_rate": 4.794779810522899e-07, "epoch": 0.9308380797396257, "percentage": 93.09, "elapsed_time": "15:19:39", "remaining_time": "1:08:17"} +{"current_steps": 3004, "total_steps": 3226, "loss": 0.7063, "learning_rate": 4.752044445529258e-07, "epoch": 0.9311480491301484, "percentage": 93.12, "elapsed_time": "15:19:57", "remaining_time": "1:07:59"} +{"current_steps": 3005, "total_steps": 3226, "loss": 0.7274, "learning_rate": 4.7094980920964204e-07, "epoch": 0.9314580185206711, "percentage": 93.15, "elapsed_time": "15:20:16", "remaining_time": "1:07:40"} +{"current_steps": 3006, "total_steps": 3226, "loss": 0.677, "learning_rate": 4.667140791411728e-07, "epoch": 0.9317679879111938, "percentage": 93.18, "elapsed_time": "15:20:34", "remaining_time": "1:07:22"} +{"current_steps": 3007, "total_steps": 3226, "loss": 0.7081, "learning_rate": 4.624972584479581e-07, "epoch": 0.9320779573017165, "percentage": 93.21, "elapsed_time": "15:20:52", "remaining_time": "1:07:04"} +{"current_steps": 3008, "total_steps": 3226, "loss": 0.7151, "learning_rate": 4.582993512121281e-07, "epoch": 0.9323879266922391, "percentage": 93.24, "elapsed_time": "15:21:11", "remaining_time": "1:06:45"}