hishamcse commited on
Commit
90adb80
1 Parent(s): a07786c

Update README.md

Browse files
Files changed (1) hide show
  1. README.md +64 -0
README.md CHANGED
@@ -7,3 +7,67 @@ tags:
7
  - stable-baseline3
8
  ---
9
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
7
  - stable-baseline3
8
  ---
9
 
10
+ # Model Card for Model ID
11
+
12
+ <!-- Provide a quick summary of what the model is/does. -->
13
+
14
+ A DRL agent playing Street Fighter III trained using diambra ai library
15
+
16
+ ## Model Details
17
+
18
+ <!-- Provide the basic links for the model. -->
19
+
20
+ - **My Code for this model:** [https://github.com/hishamcse/Advanced-DRL-Renegades-Game-Bots/tree/main/VI%20-%20Diambra_AI_Street-Fighter-III]
21
+ - **Tutorial:** [https://github.com/alexpalms/deep-rl-class/blob/main/units/en/unitbonus3]
22
+ - **Documentation:** [https://docs.diambra.ai/]
23
+
24
+ ## Training Details
25
+
26
+ #### Training Hyperparameters
27
+
28
+ '''
29
+ folders:
30
+ parent_dir: "./results/"
31
+ model_name: "sr6_128x4_das_nc"
32
+
33
+ settings:
34
+ game_id: "sfiii3n"
35
+ step_ratio: 6
36
+ frame_shape: !!python/tuple [128, 128, 1]
37
+ continue_game: 0.0
38
+ action_space: "discrete"
39
+ characters: "Ken"
40
+ difficulty: 6
41
+ outfits: 2
42
+
43
+ wrappers_settings:
44
+ normalize_reward: true
45
+ no_attack_buttons_combinations: true
46
+ stack_frames: 4
47
+ dilation: 1
48
+ add_last_action: true
49
+ stack_actions: 12
50
+ scale: true
51
+ exclude_image_scaling: true
52
+ role_relative: true
53
+ flatten: true
54
+ filter_keys: ["action", "own_health", "opp_health", "own_side", "opp_side", "opp_character", "stage", "timer"]
55
+
56
+ policy_kwargs:
57
+ #net_arch: [{ pi: [64, 64], vf: [32, 32] }]
58
+ net_arch: [64, 64]
59
+
60
+ ppo_settings:
61
+ gamma: 0.94
62
+ model_checkpoint: "0" # 0: No checkpoint, 100000: Load checkpoint (if previously trained for 100000 steps)
63
+ learning_rate: [2.5e-4, 2.5e-6] # To start
64
+ clip_range: [0.15, 0.025] # To start
65
+ #learning_rate: [5.0e-5, 2.5e-6] # Fine Tuning
66
+ #clip_range: [0.075, 0.025] # Fine Tuning
67
+ batch_size: 512 #8 #nminibatches gave different batch size depending on the number of environments: batch_size = (n_steps * n_envs) // nminibatches
68
+ n_epochs: 4
69
+ n_steps: 512
70
+ autosave_freq: 10000
71
+ time_steps: 100000
72
+
73
+ '''