Upload model
Browse files- config.json +53 -0
- configuration_dinov2.py +188 -0
- model.safetensors +3 -0
- modeling_dinov2.py +997 -0
config.json
ADDED
@@ -0,0 +1,53 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"_name_or_path": "/home/ubuntu/hibou-local-weight",
|
3 |
+
"apply_layernorm": true,
|
4 |
+
"architectures": [
|
5 |
+
"Dinov2ModelWithRegisters"
|
6 |
+
],
|
7 |
+
"attention_probs_dropout_prob": 0.0,
|
8 |
+
"auto_map": {
|
9 |
+
"AutoConfig": "configuration_dinov2.Dinov2Config",
|
10 |
+
"AutoModel": "modeling_dinov2.Dinov2ModelWithRegisters"
|
11 |
+
},
|
12 |
+
"drop_path_rate": 0.0,
|
13 |
+
"hidden_act": "gelu",
|
14 |
+
"hidden_dropout_prob": 0.0,
|
15 |
+
"hidden_size": 768,
|
16 |
+
"image_size": 224,
|
17 |
+
"initializer_range": 0.02,
|
18 |
+
"layer_norm_eps": 1e-06,
|
19 |
+
"layerscale_value": 1.0,
|
20 |
+
"mlp_ratio": 4,
|
21 |
+
"model_type": "dinov2",
|
22 |
+
"num_attention_heads": 12,
|
23 |
+
"num_channels": 3,
|
24 |
+
"num_hidden_layers": 12,
|
25 |
+
"num_register_tokens": 4,
|
26 |
+
"out_features": [
|
27 |
+
"stage12"
|
28 |
+
],
|
29 |
+
"out_indices": [
|
30 |
+
12
|
31 |
+
],
|
32 |
+
"patch_size": 14,
|
33 |
+
"qkv_bias": true,
|
34 |
+
"reshape_hidden_states": true,
|
35 |
+
"stage_names": [
|
36 |
+
"stem",
|
37 |
+
"stage1",
|
38 |
+
"stage2",
|
39 |
+
"stage3",
|
40 |
+
"stage4",
|
41 |
+
"stage5",
|
42 |
+
"stage6",
|
43 |
+
"stage7",
|
44 |
+
"stage8",
|
45 |
+
"stage9",
|
46 |
+
"stage10",
|
47 |
+
"stage11",
|
48 |
+
"stage12"
|
49 |
+
],
|
50 |
+
"torch_dtype": "float32",
|
51 |
+
"transformers_version": "4.41.2",
|
52 |
+
"use_swiglu_ffn": true
|
53 |
+
}
|
configuration_dinov2.py
ADDED
@@ -0,0 +1,188 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# coding=utf-8
|
2 |
+
# Copyright 2023 The HuggingFace Inc. team. All rights reserved.
|
3 |
+
#
|
4 |
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
5 |
+
# you may not use this file except in compliance with the License.
|
6 |
+
# You may obtain a copy of the License at
|
7 |
+
#
|
8 |
+
# http://www.apache.org/licenses/LICENSE-2.0
|
9 |
+
#
|
10 |
+
# Unless required by applicable law or agreed to in writing, software
|
11 |
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
12 |
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
13 |
+
# See the License for the specific language governing permissions and
|
14 |
+
# limitations under the License.
|
15 |
+
""" DINOv2 model configuration"""
|
16 |
+
|
17 |
+
from collections import OrderedDict
|
18 |
+
from typing import Mapping
|
19 |
+
|
20 |
+
from packaging import version
|
21 |
+
|
22 |
+
from transformers.configuration_utils import PretrainedConfig
|
23 |
+
from transformers.onnx import OnnxConfig
|
24 |
+
from transformers.utils import logging
|
25 |
+
from transformers.utils.backbone_utils import (
|
26 |
+
BackboneConfigMixin,
|
27 |
+
get_aligned_output_features_output_indices,
|
28 |
+
)
|
29 |
+
|
30 |
+
|
31 |
+
logger = logging.get_logger(__name__)
|
32 |
+
|
33 |
+
|
34 |
+
class Dinov2Config(BackboneConfigMixin, PretrainedConfig):
|
35 |
+
r"""
|
36 |
+
This is the configuration class to store the configuration of a [`Dinov2Model`]. It is used to instantiate an
|
37 |
+
Dinov2 model according to the specified arguments, defining the model architecture. Instantiating a configuration
|
38 |
+
with the defaults will yield a similar configuration to that of the Dinov2
|
39 |
+
[google/dinov2-base-patch16-224](https://huggingface.co/google/dinov2-base-patch16-224) architecture.
|
40 |
+
|
41 |
+
Configuration objects inherit from [`PretrainedConfig`] and can be used to control the model outputs. Read the
|
42 |
+
documentation from [`PretrainedConfig`] for more information.
|
43 |
+
|
44 |
+
Args:
|
45 |
+
hidden_size (`int`, *optional*, defaults to 768):
|
46 |
+
Dimensionality of the encoder layers and the pooler layer.
|
47 |
+
num_hidden_layers (`int`, *optional*, defaults to 12):
|
48 |
+
Number of hidden layers in the Transformer encoder.
|
49 |
+
num_attention_heads (`int`, *optional*, defaults to 12):
|
50 |
+
Number of attention heads for each attention layer in the Transformer encoder.
|
51 |
+
mlp_ratio (`int`, *optional*, defaults to 4):
|
52 |
+
Ratio of the hidden size of the MLPs relative to the `hidden_size`.
|
53 |
+
hidden_act (`str` or `function`, *optional*, defaults to `"gelu"`):
|
54 |
+
The non-linear activation function (function or string) in the encoder and pooler. If string, `"gelu"`,
|
55 |
+
`"relu"`, `"selu"` and `"gelu_new"` are supported.
|
56 |
+
hidden_dropout_prob (`float`, *optional*, defaults to 0.0):
|
57 |
+
The dropout probability for all fully connected layers in the embeddings, encoder, and pooler.
|
58 |
+
attention_probs_dropout_prob (`float`, *optional*, defaults to 0.0):
|
59 |
+
The dropout ratio for the attention probabilities.
|
60 |
+
initializer_range (`float`, *optional*, defaults to 0.02):
|
61 |
+
The standard deviation of the truncated_normal_initializer for initializing all weight matrices.
|
62 |
+
layer_norm_eps (`float`, *optional*, defaults to 1e-06):
|
63 |
+
The epsilon used by the layer normalization layers.
|
64 |
+
image_size (`int`, *optional*, defaults to 224):
|
65 |
+
The size (resolution) of each image.
|
66 |
+
patch_size (`int`, *optional*, defaults to 16):
|
67 |
+
The size (resolution) of each patch.
|
68 |
+
num_channels (`int`, *optional*, defaults to 3):
|
69 |
+
The number of input channels.
|
70 |
+
qkv_bias (`bool`, *optional*, defaults to `True`):
|
71 |
+
Whether to add a bias to the queries, keys and values.
|
72 |
+
layerscale_value (`float`, *optional*, defaults to 1.0):
|
73 |
+
Initial value to use for layer scale.
|
74 |
+
drop_path_rate (`float`, *optional*, defaults to 0.0):
|
75 |
+
Stochastic depth rate per sample (when applied in the main path of residual layers).
|
76 |
+
use_swiglu_ffn (`bool`, *optional*, defaults to `False`):
|
77 |
+
Whether to use the SwiGLU feedforward neural network.
|
78 |
+
out_features (`List[str]`, *optional*):
|
79 |
+
If used as backbone, list of features to output. Can be any of `"stem"`, `"stage1"`, `"stage2"`, etc.
|
80 |
+
(depending on how many stages the model has). If unset and `out_indices` is set, will default to the
|
81 |
+
corresponding stages. If unset and `out_indices` is unset, will default to the last stage. Must be in the
|
82 |
+
same order as defined in the `stage_names` attribute.
|
83 |
+
out_indices (`List[int]`, *optional*):
|
84 |
+
If used as backbone, list of indices of features to output. Can be any of 0, 1, 2, etc. (depending on how
|
85 |
+
many stages the model has). If unset and `out_features` is set, will default to the corresponding stages.
|
86 |
+
If unset and `out_features` is unset, will default to the last stage. Must be in the
|
87 |
+
same order as defined in the `stage_names` attribute.
|
88 |
+
apply_layernorm (`bool`, *optional*, defaults to `True`):
|
89 |
+
Whether to apply layer normalization to the feature maps in case the model is used as backbone.
|
90 |
+
reshape_hidden_states (`bool`, *optional*, defaults to `True`):
|
91 |
+
Whether to reshape the feature maps to 4D tensors of shape `(batch_size, hidden_size, height, width)` in
|
92 |
+
case the model is used as backbone. If `False`, the feature maps will be 3D tensors of shape `(batch_size,
|
93 |
+
seq_len, hidden_size)`.
|
94 |
+
|
95 |
+
Example:
|
96 |
+
|
97 |
+
```python
|
98 |
+
>>> from transformers import Dinov2Config, Dinov2Model
|
99 |
+
|
100 |
+
>>> # Initializing a Dinov2 dinov2-base-patch16-224 style configuration
|
101 |
+
>>> configuration = Dinov2Config()
|
102 |
+
|
103 |
+
>>> # Initializing a model (with random weights) from the dinov2-base-patch16-224 style configuration
|
104 |
+
>>> model = Dinov2Model(configuration)
|
105 |
+
|
106 |
+
>>> # Accessing the model configuration
|
107 |
+
>>> configuration = model.config
|
108 |
+
```"""
|
109 |
+
|
110 |
+
model_type = "dinov2"
|
111 |
+
|
112 |
+
def __init__(
|
113 |
+
self,
|
114 |
+
hidden_size=768,
|
115 |
+
num_hidden_layers=12,
|
116 |
+
num_attention_heads=12,
|
117 |
+
mlp_ratio=4,
|
118 |
+
hidden_act="gelu",
|
119 |
+
hidden_dropout_prob=0.0,
|
120 |
+
attention_probs_dropout_prob=0.0,
|
121 |
+
initializer_range=0.02,
|
122 |
+
layer_norm_eps=1e-6,
|
123 |
+
image_size=224,
|
124 |
+
patch_size=16,
|
125 |
+
num_channels=3,
|
126 |
+
qkv_bias=True,
|
127 |
+
layerscale_value=1.0,
|
128 |
+
drop_path_rate=0.0,
|
129 |
+
use_swiglu_ffn=False,
|
130 |
+
out_features=None,
|
131 |
+
out_indices=None,
|
132 |
+
apply_layernorm=True,
|
133 |
+
reshape_hidden_states=True,
|
134 |
+
num_register_tokens=0,
|
135 |
+
**kwargs,
|
136 |
+
):
|
137 |
+
super().__init__(**kwargs)
|
138 |
+
|
139 |
+
self.hidden_size = hidden_size
|
140 |
+
self.num_hidden_layers = num_hidden_layers
|
141 |
+
self.num_attention_heads = num_attention_heads
|
142 |
+
self.mlp_ratio = mlp_ratio
|
143 |
+
self.hidden_act = hidden_act
|
144 |
+
self.hidden_dropout_prob = hidden_dropout_prob
|
145 |
+
self.attention_probs_dropout_prob = attention_probs_dropout_prob
|
146 |
+
self.initializer_range = initializer_range
|
147 |
+
self.layer_norm_eps = layer_norm_eps
|
148 |
+
self.image_size = image_size
|
149 |
+
self.patch_size = patch_size
|
150 |
+
self.num_channels = num_channels
|
151 |
+
self.qkv_bias = qkv_bias
|
152 |
+
self.layerscale_value = layerscale_value
|
153 |
+
self.drop_path_rate = drop_path_rate
|
154 |
+
self.use_swiglu_ffn = use_swiglu_ffn
|
155 |
+
self.stage_names = ["stem"] + [
|
156 |
+
f"stage{idx}" for idx in range(1, num_hidden_layers + 1)
|
157 |
+
]
|
158 |
+
(
|
159 |
+
self._out_features,
|
160 |
+
self._out_indices,
|
161 |
+
) = get_aligned_output_features_output_indices(
|
162 |
+
out_features=out_features,
|
163 |
+
out_indices=out_indices,
|
164 |
+
stage_names=self.stage_names,
|
165 |
+
)
|
166 |
+
self.apply_layernorm = apply_layernorm
|
167 |
+
self.reshape_hidden_states = reshape_hidden_states
|
168 |
+
# add register tokens
|
169 |
+
self.num_register_tokens = num_register_tokens
|
170 |
+
|
171 |
+
|
172 |
+
class Dinov2OnnxConfig(OnnxConfig):
|
173 |
+
torch_onnx_minimum_version = version.parse("1.11")
|
174 |
+
|
175 |
+
@property
|
176 |
+
def inputs(self) -> Mapping[str, Mapping[int, str]]:
|
177 |
+
return OrderedDict(
|
178 |
+
[
|
179 |
+
(
|
180 |
+
"pixel_values",
|
181 |
+
{0: "batch", 1: "num_channels", 2: "height", 3: "width"},
|
182 |
+
),
|
183 |
+
]
|
184 |
+
)
|
185 |
+
|
186 |
+
@property
|
187 |
+
def atol_for_validation(self) -> float:
|
188 |
+
return 1e-4
|
model.safetensors
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:2121db3cac83bc9abf13a458a37b0740e2ce725609ff8d4b8e6b6c56c30c3ab6
|
3 |
+
size 342988656
|
modeling_dinov2.py
ADDED
@@ -0,0 +1,997 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# coding=utf-8
|
2 |
+
# Copyright 2023 Meta AI and The HuggingFace Inc. team. All rights reserved.
|
3 |
+
#
|
4 |
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
5 |
+
# you may not use this file except in compliance with the License.
|
6 |
+
# You may obtain a copy of the License at
|
7 |
+
#
|
8 |
+
# http://www.apache.org/licenses/LICENSE-2.0
|
9 |
+
#
|
10 |
+
# Unless required by applicable law or agreed to in writing, software
|
11 |
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
12 |
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
13 |
+
# See the License for the specific language governing permissions and
|
14 |
+
# limitations under the License.
|
15 |
+
""" PyTorch DINOv2 model."""
|
16 |
+
|
17 |
+
|
18 |
+
import collections.abc
|
19 |
+
import math
|
20 |
+
from typing import Dict, List, Optional, Set, Tuple, Union
|
21 |
+
|
22 |
+
import torch
|
23 |
+
import torch.utils.checkpoint
|
24 |
+
from torch import nn
|
25 |
+
from torch.nn import BCEWithLogitsLoss, CrossEntropyLoss, MSELoss
|
26 |
+
|
27 |
+
from transformers.activations import ACT2FN
|
28 |
+
from transformers.modeling_outputs import (
|
29 |
+
BackboneOutput,
|
30 |
+
BaseModelOutput,
|
31 |
+
BaseModelOutputWithPooling,
|
32 |
+
ImageClassifierOutput,
|
33 |
+
)
|
34 |
+
from transformers.modeling_utils import PreTrainedModel
|
35 |
+
from transformers.pytorch_utils import (
|
36 |
+
find_pruneable_heads_and_indices,
|
37 |
+
prune_linear_layer,
|
38 |
+
)
|
39 |
+
from transformers.utils import (
|
40 |
+
add_code_sample_docstrings,
|
41 |
+
add_start_docstrings,
|
42 |
+
add_start_docstrings_to_model_forward,
|
43 |
+
logging,
|
44 |
+
replace_return_docstrings,
|
45 |
+
)
|
46 |
+
from transformers.utils.backbone_utils import BackboneMixin
|
47 |
+
from .configuration_dinov2 import Dinov2Config
|
48 |
+
|
49 |
+
|
50 |
+
logger = logging.get_logger(__name__)
|
51 |
+
|
52 |
+
# General docstring
|
53 |
+
_CONFIG_FOR_DOC = "Dinov2Config"
|
54 |
+
|
55 |
+
# Base docstring
|
56 |
+
_CHECKPOINT_FOR_DOC = "facebook/dinov2-base"
|
57 |
+
_EXPECTED_OUTPUT_SHAPE = [1, 257, 768]
|
58 |
+
|
59 |
+
# Image classification docstring
|
60 |
+
_IMAGE_CLASS_CHECKPOINT = "facebook/dinov2-small-imagenet1k-1-layer"
|
61 |
+
_IMAGE_CLASS_EXPECTED_OUTPUT = "tabby, tabby cat"
|
62 |
+
|
63 |
+
|
64 |
+
class Dinov2EmbeddingsWithRegisters(nn.Module):
|
65 |
+
"""
|
66 |
+
Construct the CLS token, mask token, position and patch embeddings.
|
67 |
+
"""
|
68 |
+
|
69 |
+
def __init__(self, config: Dinov2Config) -> None:
|
70 |
+
super().__init__()
|
71 |
+
|
72 |
+
self.cls_token = nn.Parameter(torch.randn(1, 1, config.hidden_size))
|
73 |
+
self.mask_token = nn.Parameter(torch.zeros(1, config.hidden_size))
|
74 |
+
self.patch_embeddings = Dinov2PatchEmbeddings(config)
|
75 |
+
num_patches = self.patch_embeddings.num_patches
|
76 |
+
self.position_embeddings = nn.Parameter(
|
77 |
+
torch.randn(1, num_patches + 1, config.hidden_size)
|
78 |
+
)
|
79 |
+
self.dropout = nn.Dropout(config.hidden_dropout_prob)
|
80 |
+
self.config = config
|
81 |
+
# add registers
|
82 |
+
if config.num_register_tokens > 0:
|
83 |
+
self.register_tokens = nn.Parameter(
|
84 |
+
torch.randn(1, config.num_register_tokens, config.hidden_size)
|
85 |
+
)
|
86 |
+
else:
|
87 |
+
self.register_tokens = None
|
88 |
+
|
89 |
+
def interpolate_pos_encoding(
|
90 |
+
self, embeddings: torch.Tensor, height: int, width: int
|
91 |
+
) -> torch.Tensor:
|
92 |
+
"""
|
93 |
+
This method allows to interpolate the pre-trained position encodings, to be able to use the model on higher
|
94 |
+
resolution images.
|
95 |
+
|
96 |
+
Source:
|
97 |
+
https://github.com/facebookresearch/dino/blob/de9ee3df6cf39fac952ab558447af1fa1365362a/vision_transformer.py#L174
|
98 |
+
"""
|
99 |
+
|
100 |
+
num_patches = embeddings.shape[1] - 1
|
101 |
+
num_positions = self.position_embeddings.shape[1] - 1
|
102 |
+
if num_patches == num_positions and height == width:
|
103 |
+
return self.position_embeddings
|
104 |
+
class_pos_embed = self.position_embeddings[:, 0]
|
105 |
+
patch_pos_embed = self.position_embeddings[:, 1:]
|
106 |
+
dim = embeddings.shape[-1]
|
107 |
+
height = height // self.config.patch_size
|
108 |
+
width = width // self.config.patch_size
|
109 |
+
# we add a small number to avoid floating point error in the interpolation
|
110 |
+
# see discussion at https://github.com/facebookresearch/dino/issues/8
|
111 |
+
height, width = height + 0.1, width + 0.1
|
112 |
+
patch_pos_embed = patch_pos_embed.reshape(
|
113 |
+
1, int(math.sqrt(num_positions)), int(math.sqrt(num_positions)), dim
|
114 |
+
)
|
115 |
+
patch_pos_embed = patch_pos_embed.permute(0, 3, 1, 2)
|
116 |
+
target_dtype = patch_pos_embed.dtype
|
117 |
+
patch_pos_embed = nn.functional.interpolate(
|
118 |
+
patch_pos_embed.to(dtype=torch.float32),
|
119 |
+
scale_factor=(
|
120 |
+
float(height / math.sqrt(num_positions)),
|
121 |
+
float(width / math.sqrt(num_positions)),
|
122 |
+
),
|
123 |
+
mode="bicubic",
|
124 |
+
align_corners=False,
|
125 |
+
).to(dtype=target_dtype)
|
126 |
+
if (
|
127 |
+
int(height) != patch_pos_embed.shape[-2]
|
128 |
+
or int(width) != patch_pos_embed.shape[-1]
|
129 |
+
):
|
130 |
+
raise ValueError(
|
131 |
+
"Width or height does not match with the interpolated position embeddings"
|
132 |
+
)
|
133 |
+
patch_pos_embed = patch_pos_embed.permute(0, 2, 3, 1).view(1, -1, dim)
|
134 |
+
return torch.cat((class_pos_embed.unsqueeze(0), patch_pos_embed), dim=1)
|
135 |
+
|
136 |
+
def forward(
|
137 |
+
self, pixel_values: torch.Tensor, bool_masked_pos: Optional[torch.Tensor] = None
|
138 |
+
) -> torch.Tensor:
|
139 |
+
batch_size, _, height, width = pixel_values.shape
|
140 |
+
target_dtype = self.patch_embeddings.projection.weight.dtype
|
141 |
+
embeddings = self.patch_embeddings(pixel_values.to(dtype=target_dtype))
|
142 |
+
|
143 |
+
if bool_masked_pos is not None:
|
144 |
+
embeddings = torch.where(
|
145 |
+
bool_masked_pos.unsqueeze(-1),
|
146 |
+
self.mask_token.to(embeddings.dtype).unsqueeze(0),
|
147 |
+
embeddings,
|
148 |
+
)
|
149 |
+
|
150 |
+
# add the [CLS] token to the embedded patch tokens
|
151 |
+
cls_tokens = self.cls_token.expand(batch_size, -1, -1)
|
152 |
+
embeddings = torch.cat((cls_tokens, embeddings), dim=1)
|
153 |
+
|
154 |
+
# add positional encoding to each token
|
155 |
+
embeddings = embeddings + self.interpolate_pos_encoding(
|
156 |
+
embeddings, height, width
|
157 |
+
)
|
158 |
+
|
159 |
+
# add register tokens
|
160 |
+
if self.register_tokens is not None:
|
161 |
+
embeddings = torch.cat(
|
162 |
+
(
|
163 |
+
embeddings[:, :1],
|
164 |
+
self.register_tokens.expand(embeddings.shape[0], -1, -1),
|
165 |
+
embeddings[:, 1:],
|
166 |
+
),
|
167 |
+
dim=1,
|
168 |
+
)
|
169 |
+
|
170 |
+
embeddings = self.dropout(embeddings)
|
171 |
+
|
172 |
+
return embeddings
|
173 |
+
|
174 |
+
|
175 |
+
class Dinov2PatchEmbeddings(nn.Module):
|
176 |
+
"""
|
177 |
+
This class turns `pixel_values` of shape `(batch_size, num_channels, height, width)` into the initial
|
178 |
+
`hidden_states` (patch embeddings) of shape `(batch_size, seq_length, hidden_size)` to be consumed by a
|
179 |
+
Transformer.
|
180 |
+
"""
|
181 |
+
|
182 |
+
def __init__(self, config):
|
183 |
+
super().__init__()
|
184 |
+
image_size, patch_size = config.image_size, config.patch_size
|
185 |
+
num_channels, hidden_size = config.num_channels, config.hidden_size
|
186 |
+
|
187 |
+
image_size = (
|
188 |
+
image_size
|
189 |
+
if isinstance(image_size, collections.abc.Iterable)
|
190 |
+
else (image_size, image_size)
|
191 |
+
)
|
192 |
+
patch_size = (
|
193 |
+
patch_size
|
194 |
+
if isinstance(patch_size, collections.abc.Iterable)
|
195 |
+
else (patch_size, patch_size)
|
196 |
+
)
|
197 |
+
num_patches = (image_size[1] // patch_size[1]) * (
|
198 |
+
image_size[0] // patch_size[0]
|
199 |
+
)
|
200 |
+
self.image_size = image_size
|
201 |
+
self.patch_size = patch_size
|
202 |
+
self.num_channels = num_channels
|
203 |
+
self.num_patches = num_patches
|
204 |
+
|
205 |
+
self.projection = nn.Conv2d(
|
206 |
+
num_channels, hidden_size, kernel_size=patch_size, stride=patch_size
|
207 |
+
)
|
208 |
+
|
209 |
+
def forward(self, pixel_values: torch.Tensor) -> torch.Tensor:
|
210 |
+
num_channels = pixel_values.shape[1]
|
211 |
+
if num_channels != self.num_channels:
|
212 |
+
raise ValueError(
|
213 |
+
"Make sure that the channel dimension of the pixel values match with the one set in the configuration."
|
214 |
+
f" Expected {self.num_channels} but got {num_channels}."
|
215 |
+
)
|
216 |
+
embeddings = self.projection(pixel_values).flatten(2).transpose(1, 2)
|
217 |
+
return embeddings
|
218 |
+
|
219 |
+
|
220 |
+
# Copied from transformers.models.vit.modeling_vit.ViTSelfAttention with ViT->Dinov2
|
221 |
+
class Dinov2SelfAttention(nn.Module):
|
222 |
+
def __init__(self, config: Dinov2Config) -> None:
|
223 |
+
super().__init__()
|
224 |
+
if config.hidden_size % config.num_attention_heads != 0 and not hasattr(
|
225 |
+
config, "embedding_size"
|
226 |
+
):
|
227 |
+
raise ValueError(
|
228 |
+
f"The hidden size {config.hidden_size,} is not a multiple of the number of attention "
|
229 |
+
f"heads {config.num_attention_heads}."
|
230 |
+
)
|
231 |
+
|
232 |
+
self.num_attention_heads = config.num_attention_heads
|
233 |
+
self.attention_head_size = int(config.hidden_size / config.num_attention_heads)
|
234 |
+
self.all_head_size = self.num_attention_heads * self.attention_head_size
|
235 |
+
|
236 |
+
self.query = nn.Linear(
|
237 |
+
config.hidden_size, self.all_head_size, bias=config.qkv_bias
|
238 |
+
)
|
239 |
+
self.key = nn.Linear(
|
240 |
+
config.hidden_size, self.all_head_size, bias=config.qkv_bias
|
241 |
+
)
|
242 |
+
self.value = nn.Linear(
|
243 |
+
config.hidden_size, self.all_head_size, bias=config.qkv_bias
|
244 |
+
)
|
245 |
+
|
246 |
+
self.dropout = nn.Dropout(config.attention_probs_dropout_prob)
|
247 |
+
|
248 |
+
def transpose_for_scores(self, x: torch.Tensor) -> torch.Tensor:
|
249 |
+
new_x_shape = x.size()[:-1] + (
|
250 |
+
self.num_attention_heads,
|
251 |
+
self.attention_head_size,
|
252 |
+
)
|
253 |
+
x = x.view(new_x_shape)
|
254 |
+
return x.permute(0, 2, 1, 3)
|
255 |
+
|
256 |
+
def forward(
|
257 |
+
self,
|
258 |
+
hidden_states,
|
259 |
+
head_mask: Optional[torch.Tensor] = None,
|
260 |
+
output_attentions: bool = False,
|
261 |
+
) -> Union[Tuple[torch.Tensor, torch.Tensor], Tuple[torch.Tensor]]:
|
262 |
+
mixed_query_layer = self.query(hidden_states)
|
263 |
+
|
264 |
+
key_layer = self.transpose_for_scores(self.key(hidden_states))
|
265 |
+
value_layer = self.transpose_for_scores(self.value(hidden_states))
|
266 |
+
query_layer = self.transpose_for_scores(mixed_query_layer)
|
267 |
+
|
268 |
+
# Take the dot product between "query" and "key" to get the raw attention scores.
|
269 |
+
attention_scores = torch.matmul(query_layer, key_layer.transpose(-1, -2))
|
270 |
+
|
271 |
+
attention_scores = attention_scores / math.sqrt(self.attention_head_size)
|
272 |
+
|
273 |
+
# Normalize the attention scores to probabilities.
|
274 |
+
attention_probs = nn.functional.softmax(attention_scores, dim=-1)
|
275 |
+
|
276 |
+
# This is actually dropping out entire tokens to attend to, which might
|
277 |
+
# seem a bit unusual, but is taken from the original Transformer paper.
|
278 |
+
attention_probs = self.dropout(attention_probs)
|
279 |
+
|
280 |
+
# Mask heads if we want to
|
281 |
+
if head_mask is not None:
|
282 |
+
attention_probs = attention_probs * head_mask
|
283 |
+
|
284 |
+
context_layer = torch.matmul(attention_probs, value_layer)
|
285 |
+
|
286 |
+
context_layer = context_layer.permute(0, 2, 1, 3).contiguous()
|
287 |
+
new_context_layer_shape = context_layer.size()[:-2] + (self.all_head_size,)
|
288 |
+
context_layer = context_layer.view(new_context_layer_shape)
|
289 |
+
|
290 |
+
outputs = (
|
291 |
+
(context_layer, attention_probs) if output_attentions else (context_layer,)
|
292 |
+
)
|
293 |
+
|
294 |
+
return outputs
|
295 |
+
|
296 |
+
|
297 |
+
# Copied from transformers.models.vit.modeling_vit.ViTSelfOutput with ViT->Dinov2
|
298 |
+
class Dinov2SelfOutput(nn.Module):
|
299 |
+
"""
|
300 |
+
The residual connection is defined in Dinov2Layer instead of here (as is the case with other models), due to the
|
301 |
+
layernorm applied before each block.
|
302 |
+
"""
|
303 |
+
|
304 |
+
def __init__(self, config: Dinov2Config) -> None:
|
305 |
+
super().__init__()
|
306 |
+
self.dense = nn.Linear(config.hidden_size, config.hidden_size)
|
307 |
+
self.dropout = nn.Dropout(config.hidden_dropout_prob)
|
308 |
+
|
309 |
+
def forward(
|
310 |
+
self, hidden_states: torch.Tensor, input_tensor: torch.Tensor
|
311 |
+
) -> torch.Tensor:
|
312 |
+
hidden_states = self.dense(hidden_states)
|
313 |
+
hidden_states = self.dropout(hidden_states)
|
314 |
+
|
315 |
+
return hidden_states
|
316 |
+
|
317 |
+
|
318 |
+
# Copied from transformers.models.vit.modeling_vit.ViTAttention with ViT->Dinov2
|
319 |
+
class Dinov2Attention(nn.Module):
|
320 |
+
def __init__(self, config: Dinov2Config) -> None:
|
321 |
+
super().__init__()
|
322 |
+
self.attention = Dinov2SelfAttention(config)
|
323 |
+
self.output = Dinov2SelfOutput(config)
|
324 |
+
self.pruned_heads = set()
|
325 |
+
|
326 |
+
def prune_heads(self, heads: Set[int]) -> None:
|
327 |
+
if len(heads) == 0:
|
328 |
+
return
|
329 |
+
heads, index = find_pruneable_heads_and_indices(
|
330 |
+
heads,
|
331 |
+
self.attention.num_attention_heads,
|
332 |
+
self.attention.attention_head_size,
|
333 |
+
self.pruned_heads,
|
334 |
+
)
|
335 |
+
|
336 |
+
# Prune linear layers
|
337 |
+
self.attention.query = prune_linear_layer(self.attention.query, index)
|
338 |
+
self.attention.key = prune_linear_layer(self.attention.key, index)
|
339 |
+
self.attention.value = prune_linear_layer(self.attention.value, index)
|
340 |
+
self.output.dense = prune_linear_layer(self.output.dense, index, dim=1)
|
341 |
+
|
342 |
+
# Update hyper params and store pruned heads
|
343 |
+
self.attention.num_attention_heads = self.attention.num_attention_heads - len(
|
344 |
+
heads
|
345 |
+
)
|
346 |
+
self.attention.all_head_size = (
|
347 |
+
self.attention.attention_head_size * self.attention.num_attention_heads
|
348 |
+
)
|
349 |
+
self.pruned_heads = self.pruned_heads.union(heads)
|
350 |
+
|
351 |
+
def forward(
|
352 |
+
self,
|
353 |
+
hidden_states: torch.Tensor,
|
354 |
+
head_mask: Optional[torch.Tensor] = None,
|
355 |
+
output_attentions: bool = False,
|
356 |
+
) -> Union[Tuple[torch.Tensor, torch.Tensor], Tuple[torch.Tensor]]:
|
357 |
+
self_outputs = self.attention(hidden_states, head_mask, output_attentions)
|
358 |
+
|
359 |
+
attention_output = self.output(self_outputs[0], hidden_states)
|
360 |
+
|
361 |
+
outputs = (attention_output,) + self_outputs[
|
362 |
+
1:
|
363 |
+
] # add attentions if we output them
|
364 |
+
return outputs
|
365 |
+
|
366 |
+
|
367 |
+
class Dinov2LayerScale(nn.Module):
|
368 |
+
def __init__(self, config) -> None:
|
369 |
+
super().__init__()
|
370 |
+
self.lambda1 = nn.Parameter(
|
371 |
+
config.layerscale_value * torch.ones(config.hidden_size)
|
372 |
+
)
|
373 |
+
|
374 |
+
def forward(self, hidden_state: torch.Tensor) -> torch.Tensor:
|
375 |
+
return hidden_state * self.lambda1
|
376 |
+
|
377 |
+
|
378 |
+
# Copied from transformers.models.beit.modeling_beit.drop_path
|
379 |
+
def drop_path(
|
380 |
+
input: torch.Tensor, drop_prob: float = 0.0, training: bool = False
|
381 |
+
) -> torch.Tensor:
|
382 |
+
"""
|
383 |
+
Drop paths (Stochastic Depth) per sample (when applied in main path of residual blocks).
|
384 |
+
|
385 |
+
Comment by Ross Wightman: This is the same as the DropConnect impl I created for EfficientNet, etc networks,
|
386 |
+
however, the original name is misleading as 'Drop Connect' is a different form of dropout in a separate paper...
|
387 |
+
See discussion: https://github.com/tensorflow/tpu/issues/494#issuecomment-532968956 ... I've opted for changing the
|
388 |
+
layer and argument names to 'drop path' rather than mix DropConnect as a layer name and use 'survival rate' as the
|
389 |
+
argument.
|
390 |
+
"""
|
391 |
+
if drop_prob == 0.0 or not training:
|
392 |
+
return input
|
393 |
+
keep_prob = 1 - drop_prob
|
394 |
+
shape = (input.shape[0],) + (1,) * (
|
395 |
+
input.ndim - 1
|
396 |
+
) # work with diff dim tensors, not just 2D ConvNets
|
397 |
+
random_tensor = keep_prob + torch.rand(
|
398 |
+
shape, dtype=input.dtype, device=input.device
|
399 |
+
)
|
400 |
+
random_tensor.floor_() # binarize
|
401 |
+
output = input.div(keep_prob) * random_tensor
|
402 |
+
return output
|
403 |
+
|
404 |
+
|
405 |
+
# Copied from transformers.models.beit.modeling_beit.BeitDropPath
|
406 |
+
class Dinov2DropPath(nn.Module):
|
407 |
+
"""Drop paths (Stochastic Depth) per sample (when applied in main path of residual blocks)."""
|
408 |
+
|
409 |
+
def __init__(self, drop_prob: Optional[float] = None) -> None:
|
410 |
+
super().__init__()
|
411 |
+
self.drop_prob = drop_prob
|
412 |
+
|
413 |
+
def forward(self, hidden_states: torch.Tensor) -> torch.Tensor:
|
414 |
+
return drop_path(hidden_states, self.drop_prob, self.training)
|
415 |
+
|
416 |
+
def extra_repr(self) -> str:
|
417 |
+
return "p={}".format(self.drop_prob)
|
418 |
+
|
419 |
+
|
420 |
+
class Dinov2MLP(nn.Module):
|
421 |
+
def __init__(self, config) -> None:
|
422 |
+
super().__init__()
|
423 |
+
in_features = out_features = config.hidden_size
|
424 |
+
hidden_features = int(config.hidden_size * config.mlp_ratio)
|
425 |
+
self.fc1 = nn.Linear(in_features, hidden_features, bias=True)
|
426 |
+
if isinstance(config.hidden_act, str):
|
427 |
+
self.activation = ACT2FN[config.hidden_act]
|
428 |
+
else:
|
429 |
+
self.activation = config.hidden_act
|
430 |
+
self.fc2 = nn.Linear(hidden_features, out_features, bias=True)
|
431 |
+
|
432 |
+
def forward(self, hidden_state: torch.Tensor) -> torch.Tensor:
|
433 |
+
hidden_state = self.fc1(hidden_state)
|
434 |
+
hidden_state = self.activation(hidden_state)
|
435 |
+
hidden_state = self.fc2(hidden_state)
|
436 |
+
return hidden_state
|
437 |
+
|
438 |
+
|
439 |
+
class Dinov2SwiGLUFFN(nn.Module):
|
440 |
+
def __init__(self, config) -> None:
|
441 |
+
super().__init__()
|
442 |
+
in_features = out_features = config.hidden_size
|
443 |
+
hidden_features = int(config.hidden_size * config.mlp_ratio)
|
444 |
+
hidden_features = (int(hidden_features * 2 / 3) + 7) // 8 * 8
|
445 |
+
|
446 |
+
self.weights_in = nn.Linear(in_features, 2 * hidden_features, bias=True)
|
447 |
+
self.weights_out = nn.Linear(hidden_features, out_features, bias=True)
|
448 |
+
|
449 |
+
def forward(self, hidden_state: torch.Tensor) -> torch.Tensor:
|
450 |
+
hidden_state = self.weights_in(hidden_state)
|
451 |
+
x1, x2 = hidden_state.chunk(2, dim=-1)
|
452 |
+
hidden = nn.functional.silu(x1) * x2
|
453 |
+
return self.weights_out(hidden)
|
454 |
+
|
455 |
+
|
456 |
+
class Dinov2Layer(nn.Module):
|
457 |
+
"""This corresponds to the Block class in the original implementation."""
|
458 |
+
|
459 |
+
def __init__(self, config: Dinov2Config) -> None:
|
460 |
+
super().__init__()
|
461 |
+
|
462 |
+
self.norm1 = nn.LayerNorm(config.hidden_size, eps=config.layer_norm_eps)
|
463 |
+
self.attention = Dinov2Attention(config)
|
464 |
+
self.layer_scale1 = Dinov2LayerScale(config)
|
465 |
+
self.drop_path = (
|
466 |
+
Dinov2DropPath(config.drop_path_rate)
|
467 |
+
if config.drop_path_rate > 0.0
|
468 |
+
else nn.Identity()
|
469 |
+
)
|
470 |
+
|
471 |
+
self.norm2 = nn.LayerNorm(config.hidden_size, eps=config.layer_norm_eps)
|
472 |
+
|
473 |
+
if config.use_swiglu_ffn:
|
474 |
+
self.mlp = Dinov2SwiGLUFFN(config)
|
475 |
+
else:
|
476 |
+
self.mlp = Dinov2MLP(config)
|
477 |
+
self.layer_scale2 = Dinov2LayerScale(config)
|
478 |
+
|
479 |
+
def forward(
|
480 |
+
self,
|
481 |
+
hidden_states: torch.Tensor,
|
482 |
+
head_mask: Optional[torch.Tensor] = None,
|
483 |
+
output_attentions: bool = False,
|
484 |
+
) -> Union[Tuple[torch.Tensor, torch.Tensor], Tuple[torch.Tensor]]:
|
485 |
+
self_attention_outputs = self.attention(
|
486 |
+
self.norm1(
|
487 |
+
hidden_states
|
488 |
+
), # in Dinov2, layernorm is applied before self-attention
|
489 |
+
head_mask,
|
490 |
+
output_attentions=output_attentions,
|
491 |
+
)
|
492 |
+
attention_output = self_attention_outputs[0]
|
493 |
+
|
494 |
+
attention_output = self.layer_scale1(attention_output)
|
495 |
+
outputs = self_attention_outputs[
|
496 |
+
1:
|
497 |
+
] # add self attentions if we output attention weights
|
498 |
+
|
499 |
+
# first residual connection
|
500 |
+
hidden_states = self.drop_path(attention_output) + hidden_states
|
501 |
+
|
502 |
+
# in Dinov2, layernorm is also applied after self-attention
|
503 |
+
layer_output = self.norm2(hidden_states)
|
504 |
+
layer_output = self.mlp(layer_output)
|
505 |
+
layer_output = self.layer_scale2(layer_output)
|
506 |
+
|
507 |
+
# second residual connection
|
508 |
+
layer_output = self.drop_path(layer_output) + hidden_states
|
509 |
+
|
510 |
+
outputs = (layer_output,) + outputs
|
511 |
+
|
512 |
+
return outputs
|
513 |
+
|
514 |
+
|
515 |
+
# Copied from transformers.models.vit.modeling_vit.ViTEncoder with ViT->Dinov2
|
516 |
+
class Dinov2Encoder(nn.Module):
|
517 |
+
def __init__(self, config: Dinov2Config) -> None:
|
518 |
+
super().__init__()
|
519 |
+
self.config = config
|
520 |
+
self.layer = nn.ModuleList(
|
521 |
+
[Dinov2Layer(config) for _ in range(config.num_hidden_layers)]
|
522 |
+
)
|
523 |
+
self.gradient_checkpointing = False
|
524 |
+
|
525 |
+
def forward(
|
526 |
+
self,
|
527 |
+
hidden_states: torch.Tensor,
|
528 |
+
head_mask: Optional[torch.Tensor] = None,
|
529 |
+
output_attentions: bool = False,
|
530 |
+
output_hidden_states: bool = False,
|
531 |
+
return_dict: bool = True,
|
532 |
+
) -> Union[tuple, BaseModelOutput]:
|
533 |
+
all_hidden_states = () if output_hidden_states else None
|
534 |
+
all_self_attentions = () if output_attentions else None
|
535 |
+
|
536 |
+
for i, layer_module in enumerate(self.layer):
|
537 |
+
if output_hidden_states:
|
538 |
+
all_hidden_states = all_hidden_states + (hidden_states,)
|
539 |
+
|
540 |
+
layer_head_mask = head_mask[i] if head_mask is not None else None
|
541 |
+
|
542 |
+
if self.gradient_checkpointing and self.training:
|
543 |
+
layer_outputs = self._gradient_checkpointing_func(
|
544 |
+
layer_module.__call__,
|
545 |
+
hidden_states,
|
546 |
+
layer_head_mask,
|
547 |
+
output_attentions,
|
548 |
+
)
|
549 |
+
else:
|
550 |
+
layer_outputs = layer_module(
|
551 |
+
hidden_states, layer_head_mask, output_attentions
|
552 |
+
)
|
553 |
+
|
554 |
+
hidden_states = layer_outputs[0]
|
555 |
+
|
556 |
+
if output_attentions:
|
557 |
+
all_self_attentions = all_self_attentions + (layer_outputs[1],)
|
558 |
+
|
559 |
+
if output_hidden_states:
|
560 |
+
all_hidden_states = all_hidden_states + (hidden_states,)
|
561 |
+
|
562 |
+
if not return_dict:
|
563 |
+
return tuple(
|
564 |
+
v
|
565 |
+
for v in [hidden_states, all_hidden_states, all_self_attentions]
|
566 |
+
if v is not None
|
567 |
+
)
|
568 |
+
return BaseModelOutput(
|
569 |
+
last_hidden_state=hidden_states,
|
570 |
+
hidden_states=all_hidden_states,
|
571 |
+
attentions=all_self_attentions,
|
572 |
+
)
|
573 |
+
|
574 |
+
|
575 |
+
class Dinov2PreTrainedModel(PreTrainedModel):
|
576 |
+
"""
|
577 |
+
An abstract class to handle weights initialization and a simple interface for downloading and loading pretrained
|
578 |
+
models.
|
579 |
+
"""
|
580 |
+
|
581 |
+
config_class = Dinov2Config
|
582 |
+
base_model_prefix = "dinov2"
|
583 |
+
main_input_name = "pixel_values"
|
584 |
+
supports_gradient_checkpointing = True
|
585 |
+
_no_split_modules = ["Dinov2SwiGLUFFN"]
|
586 |
+
|
587 |
+
def _init_weights(self, module: Union[nn.Linear, nn.Conv2d, nn.LayerNorm]) -> None:
|
588 |
+
"""Initialize the weights"""
|
589 |
+
if isinstance(module, (nn.Linear, nn.Conv2d)):
|
590 |
+
# Upcast the input in `fp32` and cast it back to desired `dtype` to avoid
|
591 |
+
# `trunc_normal_cpu` not implemented in `half` issues
|
592 |
+
module.weight.data = nn.init.trunc_normal_(
|
593 |
+
module.weight.data.to(torch.float32),
|
594 |
+
mean=0.0,
|
595 |
+
std=self.config.initializer_range,
|
596 |
+
).to(module.weight.dtype)
|
597 |
+
if module.bias is not None:
|
598 |
+
module.bias.data.zero_()
|
599 |
+
elif isinstance(module, nn.LayerNorm):
|
600 |
+
module.bias.data.zero_()
|
601 |
+
module.weight.data.fill_(1.0)
|
602 |
+
elif isinstance(module, Dinov2EmbeddingsWithRegisters):
|
603 |
+
module.position_embeddings.data = nn.init.trunc_normal_(
|
604 |
+
module.position_embeddings.data.to(torch.float32),
|
605 |
+
mean=0.0,
|
606 |
+
std=self.config.initializer_range,
|
607 |
+
).to(module.position_embeddings.dtype)
|
608 |
+
|
609 |
+
module.cls_token.data = nn.init.trunc_normal_(
|
610 |
+
module.cls_token.data.to(torch.float32),
|
611 |
+
mean=0.0,
|
612 |
+
std=self.config.initializer_range,
|
613 |
+
).to(module.cls_token.dtype)
|
614 |
+
if module.register_tokens is not None:
|
615 |
+
module.register_tokens.data = nn.init.trunc_normal_(
|
616 |
+
module.register_tokens.data.to(torch.float32),
|
617 |
+
mean=0.0,
|
618 |
+
std=self.config.initializer_range,
|
619 |
+
).to(module.register_tokens.dtype)
|
620 |
+
|
621 |
+
|
622 |
+
DINOV2_START_DOCSTRING = r"""
|
623 |
+
This model is a PyTorch [torch.nn.Module](https://pytorch.org/docs/stable/nn.html#torch.nn.Module) subclass. Use it
|
624 |
+
as a regular PyTorch Module and refer to the PyTorch documentation for all matter related to general usage and
|
625 |
+
behavior.
|
626 |
+
|
627 |
+
Parameters:
|
628 |
+
config ([`Dinov2Config`]): Model configuration class with all the parameters of the model.
|
629 |
+
Initializing with a config file does not load the weights associated with the model, only the
|
630 |
+
configuration. Check out the [`~PreTrainedModel.from_pretrained`] method to load the model weights.
|
631 |
+
"""
|
632 |
+
|
633 |
+
DINOV2_BASE_INPUTS_DOCSTRING = r"""
|
634 |
+
Args:
|
635 |
+
pixel_values (`torch.FloatTensor` of shape `(batch_size, num_channels, height, width)`):
|
636 |
+
Pixel values. Pixel values can be obtained using [`AutoImageProcessor`]. See
|
637 |
+
[`BitImageProcessor.preprocess`] for details.
|
638 |
+
|
639 |
+
bool_masked_pos (`torch.BoolTensor` of shape `(batch_size, sequence_length)`):
|
640 |
+
Boolean masked positions. Indicates which patches are masked (1) and which aren't (0). Only relevant for
|
641 |
+
pre-training.
|
642 |
+
|
643 |
+
head_mask (`torch.FloatTensor` of shape `(num_heads,)` or `(num_layers, num_heads)`, *optional*):
|
644 |
+
Mask to nullify selected heads of the self-attention modules. Mask values selected in `[0, 1]`:
|
645 |
+
|
646 |
+
- 1 indicates the head is **not masked**,
|
647 |
+
- 0 indicates the head is **masked**.
|
648 |
+
|
649 |
+
output_attentions (`bool`, *optional*):
|
650 |
+
Whether or not to return the attentions tensors of all attention layers. See `attentions` under returned
|
651 |
+
tensors for more detail.
|
652 |
+
output_hidden_states (`bool`, *optional*):
|
653 |
+
Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors for
|
654 |
+
more detail.
|
655 |
+
return_dict (`bool`, *optional*):
|
656 |
+
Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple.
|
657 |
+
"""
|
658 |
+
|
659 |
+
DINOV2_INPUTS_DOCSTRING = r"""
|
660 |
+
Args:
|
661 |
+
pixel_values (`torch.FloatTensor` of shape `(batch_size, num_channels, height, width)`):
|
662 |
+
Pixel values. Pixel values can be obtained using [`AutoImageProcessor`]. See
|
663 |
+
[`BitImageProcessor.preprocess`] for details.
|
664 |
+
|
665 |
+
head_mask (`torch.FloatTensor` of shape `(num_heads,)` or `(num_layers, num_heads)`, *optional*):
|
666 |
+
Mask to nullify selected heads of the self-attention modules. Mask values selected in `[0, 1]`:
|
667 |
+
|
668 |
+
- 1 indicates the head is **not masked**,
|
669 |
+
- 0 indicates the head is **masked**.
|
670 |
+
|
671 |
+
output_attentions (`bool`, *optional*):
|
672 |
+
Whether or not to return the attentions tensors of all attention layers. See `attentions` under returned
|
673 |
+
tensors for more detail.
|
674 |
+
output_hidden_states (`bool`, *optional*):
|
675 |
+
Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors for
|
676 |
+
more detail.
|
677 |
+
return_dict (`bool`, *optional*):
|
678 |
+
Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple.
|
679 |
+
"""
|
680 |
+
|
681 |
+
|
682 |
+
@add_start_docstrings(
|
683 |
+
"The bare DINOv2 Model transformer outputting raw hidden-states without any specific head on top.",
|
684 |
+
DINOV2_START_DOCSTRING,
|
685 |
+
)
|
686 |
+
class Dinov2ModelWithRegisters(Dinov2PreTrainedModel):
|
687 |
+
def __init__(self, config: Dinov2Config):
|
688 |
+
super().__init__(config)
|
689 |
+
self.config = config
|
690 |
+
|
691 |
+
self.embeddings = Dinov2EmbeddingsWithRegisters(config)
|
692 |
+
self.encoder = Dinov2Encoder(config)
|
693 |
+
|
694 |
+
self.layernorm = nn.LayerNorm(config.hidden_size, eps=config.layer_norm_eps)
|
695 |
+
|
696 |
+
# Initialize weights and apply final processing
|
697 |
+
self.post_init()
|
698 |
+
|
699 |
+
def get_input_embeddings(self) -> Dinov2PatchEmbeddings:
|
700 |
+
return self.embeddings.patch_embeddings
|
701 |
+
|
702 |
+
def _prune_heads(self, heads_to_prune: Dict[int, List[int]]) -> None:
|
703 |
+
"""
|
704 |
+
Prunes heads of the model. heads_to_prune: dict of {layer_num: list of heads to prune in this layer} See base
|
705 |
+
class PreTrainedModel
|
706 |
+
"""
|
707 |
+
for layer, heads in heads_to_prune.items():
|
708 |
+
self.encoder.layer[layer].attention.prune_heads(heads)
|
709 |
+
|
710 |
+
@add_start_docstrings_to_model_forward(DINOV2_BASE_INPUTS_DOCSTRING)
|
711 |
+
@add_code_sample_docstrings(
|
712 |
+
checkpoint=_CHECKPOINT_FOR_DOC,
|
713 |
+
output_type=BaseModelOutputWithPooling,
|
714 |
+
config_class=_CONFIG_FOR_DOC,
|
715 |
+
modality="vision",
|
716 |
+
expected_output=_EXPECTED_OUTPUT_SHAPE,
|
717 |
+
)
|
718 |
+
def forward(
|
719 |
+
self,
|
720 |
+
pixel_values: Optional[torch.Tensor] = None,
|
721 |
+
bool_masked_pos: Optional[torch.Tensor] = None,
|
722 |
+
head_mask: Optional[torch.Tensor] = None,
|
723 |
+
output_attentions: Optional[bool] = None,
|
724 |
+
output_hidden_states: Optional[bool] = None,
|
725 |
+
return_dict: Optional[bool] = None,
|
726 |
+
) -> Union[Tuple, BaseModelOutputWithPooling]:
|
727 |
+
output_attentions = (
|
728 |
+
output_attentions
|
729 |
+
if output_attentions is not None
|
730 |
+
else self.config.output_attentions
|
731 |
+
)
|
732 |
+
output_hidden_states = (
|
733 |
+
output_hidden_states
|
734 |
+
if output_hidden_states is not None
|
735 |
+
else self.config.output_hidden_states
|
736 |
+
)
|
737 |
+
return_dict = (
|
738 |
+
return_dict if return_dict is not None else self.config.use_return_dict
|
739 |
+
)
|
740 |
+
|
741 |
+
if pixel_values is None:
|
742 |
+
raise ValueError("You have to specify pixel_values")
|
743 |
+
|
744 |
+
# Prepare head mask if needed
|
745 |
+
# 1.0 in head_mask indicate we keep the head
|
746 |
+
# attention_probs has shape bsz x n_heads x N x N
|
747 |
+
# input head_mask has shape [num_heads] or [num_hidden_layers x num_heads]
|
748 |
+
# and head_mask is converted to shape [num_hidden_layers x batch x num_heads x seq_length x seq_length]
|
749 |
+
head_mask = self.get_head_mask(head_mask, self.config.num_hidden_layers)
|
750 |
+
|
751 |
+
embedding_output = self.embeddings(
|
752 |
+
pixel_values, bool_masked_pos=bool_masked_pos
|
753 |
+
)
|
754 |
+
|
755 |
+
encoder_outputs = self.encoder(
|
756 |
+
embedding_output,
|
757 |
+
head_mask=head_mask,
|
758 |
+
output_attentions=output_attentions,
|
759 |
+
output_hidden_states=output_hidden_states,
|
760 |
+
return_dict=return_dict,
|
761 |
+
)
|
762 |
+
sequence_output = encoder_outputs[0]
|
763 |
+
sequence_output = self.layernorm(sequence_output)
|
764 |
+
pooled_output = sequence_output[:, 0, :]
|
765 |
+
|
766 |
+
if not return_dict:
|
767 |
+
head_outputs = (sequence_output, pooled_output)
|
768 |
+
return head_outputs + encoder_outputs[1:]
|
769 |
+
|
770 |
+
return BaseModelOutputWithPooling(
|
771 |
+
last_hidden_state=sequence_output,
|
772 |
+
pooler_output=pooled_output,
|
773 |
+
hidden_states=encoder_outputs.hidden_states,
|
774 |
+
attentions=encoder_outputs.attentions,
|
775 |
+
)
|
776 |
+
|
777 |
+
|
778 |
+
@add_start_docstrings(
|
779 |
+
"""
|
780 |
+
Dinov2 Model transformer with an image classification head on top (a linear layer on top of the final hidden state
|
781 |
+
of the [CLS] token) e.g. for ImageNet.
|
782 |
+
""",
|
783 |
+
DINOV2_START_DOCSTRING,
|
784 |
+
)
|
785 |
+
class Dinov2ForImageClassification(Dinov2PreTrainedModel):
|
786 |
+
def __init__(self, config: Dinov2Config) -> None:
|
787 |
+
super().__init__(config)
|
788 |
+
|
789 |
+
self.num_labels = config.num_labels
|
790 |
+
self.dinov2 = Dinov2ModelWithRegisters(config)
|
791 |
+
|
792 |
+
# Classifier head
|
793 |
+
self.classifier = (
|
794 |
+
nn.Linear(config.hidden_size * 2, config.num_labels)
|
795 |
+
if config.num_labels > 0
|
796 |
+
else nn.Identity()
|
797 |
+
)
|
798 |
+
|
799 |
+
# Initialize weights and apply final processing
|
800 |
+
self.post_init()
|
801 |
+
|
802 |
+
@add_start_docstrings_to_model_forward(DINOV2_INPUTS_DOCSTRING)
|
803 |
+
@add_code_sample_docstrings(
|
804 |
+
checkpoint=_IMAGE_CLASS_CHECKPOINT,
|
805 |
+
output_type=ImageClassifierOutput,
|
806 |
+
config_class=_CONFIG_FOR_DOC,
|
807 |
+
expected_output=_IMAGE_CLASS_EXPECTED_OUTPUT,
|
808 |
+
)
|
809 |
+
def forward(
|
810 |
+
self,
|
811 |
+
pixel_values: Optional[torch.Tensor] = None,
|
812 |
+
head_mask: Optional[torch.Tensor] = None,
|
813 |
+
labels: Optional[torch.Tensor] = None,
|
814 |
+
output_attentions: Optional[bool] = None,
|
815 |
+
output_hidden_states: Optional[bool] = None,
|
816 |
+
return_dict: Optional[bool] = None,
|
817 |
+
) -> Union[tuple, ImageClassifierOutput]:
|
818 |
+
r"""
|
819 |
+
labels (`torch.LongTensor` of shape `(batch_size,)`, *optional*):
|
820 |
+
Labels for computing the image classification/regression loss. Indices should be in `[0, ...,
|
821 |
+
config.num_labels - 1]`. If `config.num_labels == 1` a regression loss is computed (Mean-Square loss), If
|
822 |
+
`config.num_labels > 1` a classification loss is computed (Cross-Entropy).
|
823 |
+
"""
|
824 |
+
return_dict = (
|
825 |
+
return_dict if return_dict is not None else self.config.use_return_dict
|
826 |
+
)
|
827 |
+
|
828 |
+
outputs = self.dinov2(
|
829 |
+
pixel_values,
|
830 |
+
head_mask=head_mask,
|
831 |
+
output_attentions=output_attentions,
|
832 |
+
output_hidden_states=output_hidden_states,
|
833 |
+
return_dict=return_dict,
|
834 |
+
)
|
835 |
+
|
836 |
+
sequence_output = outputs[0] # batch_size, sequence_length, hidden_size
|
837 |
+
|
838 |
+
cls_token = sequence_output[:, 0]
|
839 |
+
patch_tokens = sequence_output[:, 1:]
|
840 |
+
|
841 |
+
linear_input = torch.cat([cls_token, patch_tokens.mean(dim=1)], dim=1)
|
842 |
+
|
843 |
+
logits = self.classifier(linear_input)
|
844 |
+
|
845 |
+
loss = None
|
846 |
+
if labels is not None:
|
847 |
+
# move labels to correct device to enable model parallelism
|
848 |
+
labels = labels.to(logits.device)
|
849 |
+
if self.config.problem_type is None:
|
850 |
+
if self.num_labels == 1:
|
851 |
+
self.config.problem_type = "regression"
|
852 |
+
elif self.num_labels > 1 and (
|
853 |
+
labels.dtype == torch.long or labels.dtype == torch.int
|
854 |
+
):
|
855 |
+
self.config.problem_type = "single_label_classification"
|
856 |
+
else:
|
857 |
+
self.config.problem_type = "multi_label_classification"
|
858 |
+
|
859 |
+
if self.config.problem_type == "regression":
|
860 |
+
loss_fct = MSELoss()
|
861 |
+
if self.num_labels == 1:
|
862 |
+
loss = loss_fct(logits.squeeze(), labels.squeeze())
|
863 |
+
else:
|
864 |
+
loss = loss_fct(logits, labels)
|
865 |
+
elif self.config.problem_type == "single_label_classification":
|
866 |
+
loss_fct = CrossEntropyLoss()
|
867 |
+
loss = loss_fct(logits.view(-1, self.num_labels), labels.view(-1))
|
868 |
+
elif self.config.problem_type == "multi_label_classification":
|
869 |
+
loss_fct = BCEWithLogitsLoss()
|
870 |
+
loss = loss_fct(logits, labels)
|
871 |
+
|
872 |
+
if not return_dict:
|
873 |
+
output = (logits,) + outputs[2:]
|
874 |
+
return ((loss,) + output) if loss is not None else output
|
875 |
+
|
876 |
+
return ImageClassifierOutput(
|
877 |
+
loss=loss,
|
878 |
+
logits=logits,
|
879 |
+
hidden_states=outputs.hidden_states,
|
880 |
+
attentions=outputs.attentions,
|
881 |
+
)
|
882 |
+
|
883 |
+
|
884 |
+
@add_start_docstrings(
|
885 |
+
"""
|
886 |
+
Dinov2 backbone, to be used with frameworks like DETR and MaskFormer.
|
887 |
+
""",
|
888 |
+
DINOV2_START_DOCSTRING,
|
889 |
+
)
|
890 |
+
class Dinov2Backbone(Dinov2PreTrainedModel, BackboneMixin):
|
891 |
+
def __init__(self, config):
|
892 |
+
super().__init__(config)
|
893 |
+
super()._init_backbone(config)
|
894 |
+
|
895 |
+
self.num_features = [
|
896 |
+
config.hidden_size for _ in range(config.num_hidden_layers + 1)
|
897 |
+
]
|
898 |
+
self.embeddings = Dinov2EmbeddingsWithRegisters(config)
|
899 |
+
self.encoder = Dinov2Encoder(config)
|
900 |
+
|
901 |
+
self.layernorm = nn.LayerNorm(config.hidden_size, eps=config.layer_norm_eps)
|
902 |
+
|
903 |
+
# Initialize weights and apply final processing
|
904 |
+
self.post_init()
|
905 |
+
|
906 |
+
def get_input_embeddings(self) -> Dinov2PatchEmbeddings:
|
907 |
+
return self.embeddings.patch_embeddings
|
908 |
+
|
909 |
+
@add_start_docstrings_to_model_forward(DINOV2_INPUTS_DOCSTRING)
|
910 |
+
@replace_return_docstrings(output_type=BackboneOutput, config_class=_CONFIG_FOR_DOC)
|
911 |
+
def forward(
|
912 |
+
self,
|
913 |
+
pixel_values: torch.Tensor,
|
914 |
+
output_hidden_states: Optional[bool] = None,
|
915 |
+
output_attentions: Optional[bool] = None,
|
916 |
+
return_dict: Optional[bool] = None,
|
917 |
+
) -> BackboneOutput:
|
918 |
+
"""
|
919 |
+
Returns:
|
920 |
+
|
921 |
+
Examples:
|
922 |
+
|
923 |
+
```python
|
924 |
+
>>> from transformers import AutoImageProcessor, AutoBackbone
|
925 |
+
>>> import torch
|
926 |
+
>>> from PIL import Image
|
927 |
+
>>> import requests
|
928 |
+
|
929 |
+
>>> url = "http://images.cocodataset.org/val2017/000000039769.jpg"
|
930 |
+
>>> image = Image.open(requests.get(url, stream=True).raw)
|
931 |
+
|
932 |
+
>>> processor = AutoImageProcessor.from_pretrained("facebook/dinov2-base")
|
933 |
+
>>> model = AutoBackbone.from_pretrained(
|
934 |
+
... "facebook/dinov2-base", out_features=["stage2", "stage5", "stage8", "stage11"]
|
935 |
+
... )
|
936 |
+
|
937 |
+
>>> inputs = processor(image, return_tensors="pt")
|
938 |
+
|
939 |
+
>>> outputs = model(**inputs)
|
940 |
+
>>> feature_maps = outputs.feature_maps
|
941 |
+
>>> list(feature_maps[-1].shape)
|
942 |
+
[1, 768, 16, 16]
|
943 |
+
```"""
|
944 |
+
return_dict = (
|
945 |
+
return_dict if return_dict is not None else self.config.use_return_dict
|
946 |
+
)
|
947 |
+
output_hidden_states = (
|
948 |
+
output_hidden_states
|
949 |
+
if output_hidden_states is not None
|
950 |
+
else self.config.output_hidden_states
|
951 |
+
)
|
952 |
+
output_attentions = (
|
953 |
+
output_attentions
|
954 |
+
if output_attentions is not None
|
955 |
+
else self.config.output_attentions
|
956 |
+
)
|
957 |
+
|
958 |
+
embedding_output = self.embeddings(pixel_values)
|
959 |
+
|
960 |
+
outputs = self.encoder(
|
961 |
+
embedding_output,
|
962 |
+
output_hidden_states=True,
|
963 |
+
output_attentions=output_attentions,
|
964 |
+
return_dict=return_dict,
|
965 |
+
)
|
966 |
+
|
967 |
+
hidden_states = outputs.hidden_states if return_dict else outputs[1]
|
968 |
+
|
969 |
+
feature_maps = ()
|
970 |
+
for stage, hidden_state in zip(self.stage_names, hidden_states):
|
971 |
+
if stage in self.out_features:
|
972 |
+
if self.config.apply_layernorm:
|
973 |
+
hidden_state = self.layernorm(hidden_state)
|
974 |
+
if self.config.reshape_hidden_states:
|
975 |
+
hidden_state = hidden_state[:, 1:]
|
976 |
+
# this was actually a bug in the original implementation that we copied here,
|
977 |
+
# cause normally the order is height, width
|
978 |
+
batch_size, _, height, width = pixel_values.shape
|
979 |
+
patch_size = self.config.patch_size
|
980 |
+
hidden_state = hidden_state.reshape(
|
981 |
+
batch_size, height // patch_size, width // patch_size, -1
|
982 |
+
)
|
983 |
+
hidden_state = hidden_state.permute(0, 3, 1, 2).contiguous()
|
984 |
+
feature_maps += (hidden_state,)
|
985 |
+
|
986 |
+
if not return_dict:
|
987 |
+
if output_hidden_states:
|
988 |
+
output = (feature_maps,) + outputs[1:]
|
989 |
+
else:
|
990 |
+
output = (feature_maps,) + outputs[2:]
|
991 |
+
return output
|
992 |
+
|
993 |
+
return BackboneOutput(
|
994 |
+
feature_maps=feature_maps,
|
995 |
+
hidden_states=outputs.hidden_states if output_hidden_states else None,
|
996 |
+
attentions=outputs.attentions if output_attentions else None,
|
997 |
+
)
|