--- library_name: hivex original_train_name: AerialWildfireSuppression_difficulty_10_task_0_run_id_2_train tags: - hivex - hivex-aerial-wildfire-suppression - reinforcement-learning - multi-agent-reinforcement-learning model-index: - name: hivex-AWS-PPO-baseline-task-0-difficulty-10 results: - task: type: main-task name: main_task task-id: 0 difficulty-id: 10 dataset: name: hivex-aerial-wildfire-suppression type: hivex-aerial-wildfire-suppression metrics: - type: crash_count value: 0.3416666768491268 +/- 0.20572934629325312 name: Crash Count verified: true - type: extinguishing_trees value: 22.541666667163373 +/- 44.01873186547685 name: Extinguishing Trees verified: true - type: extinguishing_trees_reward value: 112.70833333134651 +/- 220.0936595589533 name: Extinguishing Trees Reward verified: true - type: fire_out value: 0.07500000223517418 +/- 0.1750104476777611 name: Fire Out verified: true - type: fire_too_close_to_city value: 0.875 +/- 0.31933318682925255 name: Fire too Close to City verified: true - type: preparing_trees value: 674.8416697263717 +/- 544.8041855624299 name: Preparing Trees verified: true - type: preparing_trees_reward value: 674.8416697263717 +/- 544.8041855624299 name: Preparing Trees Reward verified: true - type: water_drop value: 49.54999938011169 +/- 18.605090713043403 name: Water Drop verified: true - type: water_pickup value: 49.26666617393494 +/- 18.509156507840594 name: Water Pickup verified: true - type: cumulative_reward value: 880.1708267211914 +/- 503.11196457140045 name: Cumulative Reward verified: true --- This model serves as the baseline for the **Aerial Wildfire Suppression** environment, trained and tested on task 0 with difficulty 10 using the Proximal Policy Optimization (PPO) algorithm.

Environment: **Aerial Wildfire Suppression**
Task: 0
Difficulty: 10
Algorithm: PPO
Episode Length: 3000
Training max_steps: 1800000
Testing max_steps: 180000

Train & Test [Scripts](https://github.com/hivex-research/hivex)
Download the [Environment](https://github.com/hivex-research/hivex-environments)