--- library_name: hivex original_train_name: AerialWildfireSuppression_difficulty_3_task_0_run_id_1_train tags: - hivex - hivex-aerial-wildfire-suppression - reinforcement-learning - multi-agent-reinforcement-learning model-index: - name: hivex-AWS-PPO-baseline-task-0-difficulty-3 results: - task: type: main-task name: main_task task-id: 0 difficulty-id: 3 dataset: name: hivex-aerial-wildfire-suppression type: hivex-aerial-wildfire-suppression metrics: - type: crash_count value: 0.0833333358168602 +/- 0.12681432215480823 name: Crash Count verified: true - type: extinguishing_trees value: 6.791666813194752 +/- 17.30909921307683 name: Extinguishing Trees verified: true - type: extinguishing_trees_reward value: 33.95833272337914 +/- 86.54549141729059 name: Extinguishing Trees Reward verified: true - type: fire_out value: 0.3250000037252903 +/- 0.372579912027151 name: Fire Out verified: true - type: fire_too_close_to_city value: 0.85 +/- 0.3284733426658932 name: Fire too Close to City verified: true - type: preparing_trees value: 1214.2916635513307 +/- 909.8089264585527 name: Preparing Trees verified: true - type: preparing_trees_reward value: 1214.2916635513307 +/- 909.8089264585527 name: Preparing Trees Reward verified: true - type: water_drop value: 20.291666793823243 +/- 8.402323759531772 name: Water Drop verified: true - type: water_pickup value: 19.79166646003723 +/- 8.33067930580936 name: Water Pickup verified: true - type: cumulative_reward value: 1321.465838623047 +/- 654.5775149733734 name: Cumulative Reward verified: true --- This model serves as the baseline for the **Aerial Wildfire Suppression** environment, trained and tested on task 0 with difficulty 3 using the Proximal Policy Optimization (PPO) algorithm.

Environment: **Aerial Wildfire Suppression**
Task: 0
Difficulty: 3
Algorithm: PPO
Episode Length: 3000
Training max_steps: 1800000
Testing max_steps: 180000

Train & Test [Scripts](https://github.com/hivex-research/hivex)
Download the [Environment](https://github.com/hivex-research/hivex-environments)