--- library_name: hivex original_train_name: AerialWildfireSuppression_difficulty_9_task_0_run_id_1_train tags: - hivex - hivex-aerial-wildfire-suppression - reinforcement-learning - multi-agent-reinforcement-learning model-index: - name: hivex-AWS-PPO-baseline-task-0-difficulty-9 results: - task: type: main-task name: main_task task-id: 0 difficulty-id: 9 dataset: name: hivex-aerial-wildfire-suppression type: hivex-aerial-wildfire-suppression metrics: - type: crash_count value: 0.24166667386889457 +/- 0.1750104476777611 name: Crash Count verified: true - type: extinguishing_trees value: 17.141666746139528 +/- 39.513165920891936 name: Extinguishing Trees verified: true - type: extinguishing_trees_reward value: 85.70833311080932 +/- 197.56582920337453 name: Extinguishing Trees Reward verified: true - type: fire_out value: 0.12500000223517418 +/- 0.24106852927463382 name: Fire Out verified: true - type: fire_too_close_to_city value: 0.9 +/- 0.2615741818902984 name: Fire too Close to City verified: true - type: preparing_trees value: 721.7666670084 +/- 737.4681856167363 name: Preparing Trees verified: true - type: preparing_trees_reward value: 721.7666670084 +/- 737.4681856167363 name: Preparing Trees Reward verified: true - type: water_drop value: 66.28333377838135 +/- 30.644495531353783 name: Water Drop verified: true - type: water_pickup value: 65.93333344459533 +/- 30.521844562150648 name: Water Pickup verified: true - type: cumulative_reward value: 996.1558359742164 +/- 875.8416918638716 name: Cumulative Reward verified: true --- This model serves as the baseline for the **Aerial Wildfire Suppression** environment, trained and tested on task 0 with difficulty 9 using the Proximal Policy Optimization (PPO) algorithm.

Environment: **Aerial Wildfire Suppression**
Task: 0
Difficulty: 9
Algorithm: PPO
Episode Length: 3000
Training max_steps: 1800000
Testing max_steps: 180000

Train & Test [Scripts](https://github.com/hivex-research/hivex)
Download the [Environment](https://github.com/hivex-research/hivex-environments)