--- library_name: hivex original_train_name: AerialWildfireSuppression_difficulty_1_task_1_run_id_2_train tags: - hivex - hivex-aerial-wildfire-suppression - reinforcement-learning - multi-agent-reinforcement-learning model-index: - name: hivex-AWS-PPO-baseline-task-1-difficulty-1 results: - task: type: sub-task name: maximize_extinguished_burning_trees task-id: 1 difficulty-id: 1 dataset: name: hivex-aerial-wildfire-suppression type: hivex-aerial-wildfire-suppression metrics: - type: crash_count value: 0.10555555783212185 +/- 0.16411299281130134 name: Crash Count verified: true - type: extinguishing_trees value: 5.788888883590698 +/- 10.994661682099375 name: Extinguishing Trees verified: true - type: extinguishing_trees_reward value: 289.44444465637207 +/- 549.7330871286864 name: Extinguishing Trees Reward verified: true - type: fire_out value: 0.36388889104127886 +/- 0.42710131135604623 name: Fire Out verified: true - type: fire_too_close_to_city value: 0.7083333343267441 +/- 0.40780040400115103 name: Fire too Close to City verified: true - type: preparing_trees value: 556.8888899803162 +/- 429.9611601706457 name: Preparing Trees verified: true - type: preparing_trees_reward value: 556.8888899803162 +/- 429.9611601706457 name: Preparing Trees Reward verified: true - type: water_drop value: 15.513888931274414 +/- 8.362694438094918 name: Water Drop verified: true - type: water_pickup value: 14.897222208976746 +/- 8.362974150430102 name: Water Pickup verified: true - type: cumulative_reward value: 817.7808405578137 +/- 571.7617652663462 name: Cumulative Reward verified: true --- This model serves as the baseline for the **Aerial Wildfire Suppression** environment, trained and tested on task 1 with difficulty 1 using the Proximal Policy Optimization (PPO) algorithm.

Environment: **Aerial Wildfire Suppression**
Task: 1
Difficulty: 1
Algorithm: PPO
Episode Length: 3000
Training max_steps: 1800000
Testing max_steps: 180000

Train & Test [Scripts](https://github.com/hivex-research/hivex)
Download the [Environment](https://github.com/hivex-research/hivex-environments)