--- library_name: hivex original_train_name: AerialWildfireSuppression_difficulty_3_task_1_run_id_2_train tags: - hivex - hivex-aerial-wildfire-suppression - reinforcement-learning - multi-agent-reinforcement-learning model-index: - name: hivex-AWS-PPO-baseline-task-1-difficulty-3 results: - task: type: sub-task name: maximize_extinguished_burning_trees task-id: 1 difficulty-id: 3 dataset: name: hivex-aerial-wildfire-suppression type: hivex-aerial-wildfire-suppression metrics: - type: crash_count value: 0.3388888955116272 +/- 0.28207207032208675 name: Crash Count verified: true - type: extinguishing_trees value: 16.488888897374274 +/- 25.98319189651514 name: Extinguishing Trees verified: true - type: extinguishing_trees_reward value: 824.4444324493409 +/- 1299.1595474984952 name: Extinguishing Trees Reward verified: true - type: fire_out value: 0.1083333358168602 +/- 0.1970172357255564 name: Fire Out verified: true - type: fire_too_close_to_city value: 0.716666667163372 +/- 0.4192028074228474 name: Fire too Close to City verified: true - type: preparing_trees value: 654.4472227096558 +/- 552.5331585615204 name: Preparing Trees verified: true - type: preparing_trees_reward value: 654.4472227096558 +/- 552.5331585615204 name: Preparing Trees Reward verified: true - type: water_drop value: 38.655555725097656 +/- 17.813019068968373 name: Water Drop verified: true - type: water_pickup value: 38.36388869285584 +/- 17.753789101902516 name: Water Pickup verified: true - type: cumulative_reward value: 1660.678343963623 +/- 2522.553744525116 name: Cumulative Reward verified: true --- This model serves as the baseline for the **Aerial Wildfire Suppression** environment, trained and tested on task 1 with difficulty 3 using the Proximal Policy Optimization (PPO) algorithm.

Environment: **Aerial Wildfire Suppression**
Task: 1
Difficulty: 3
Algorithm: PPO
Episode Length: 3000
Training max_steps: 1800000
Testing max_steps: 180000

Train & Test [Scripts](https://github.com/hivex-research/hivex)
Download the [Environment](https://github.com/hivex-research/hivex-environments)