--- library_name: hivex original_train_name: AerialWildfireSuppression_difficulty_6_task_2_run_id_0_train tags: - hivex - hivex-aerial-wildfire-suppression - reinforcement-learning - multi-agent-reinforcement-learning model-index: - name: hivex-AWS-PPO-baseline-task-2-difficulty-6 results: - task: type: sub-task name: maximize_preparing_non_burning_trees task-id: 2 difficulty-id: 6 dataset: name: hivex-aerial-wildfire-suppression type: hivex-aerial-wildfire-suppression metrics: - type: crash_count value: 0.11666667014360428 +/- 0.18809603682131015 name: Crash Count verified: true - type: extinguishing_trees value: 26.57500003799796 +/- 36.448371998578736 name: Extinguishing Trees verified: true - type: extinguishing_trees_reward value: 132.87500058710575 +/- 182.24186375120422 name: Extinguishing Trees Reward verified: true - type: fire_out value: 0.3166666701436043 +/- 0.4114586821666224 name: Fire Out verified: true - type: fire_too_close_to_city value: 0.95 +/- 0.15389675281277315 name: Fire too Close to City verified: true - type: preparing_trees value: 637.158332157135 +/- 502.3677062623285 name: Preparing Trees verified: true - type: preparing_trees_reward value: 3185.791680145264 +/- 2511.8385615224347 name: Preparing Trees Reward verified: true - type: water_drop value: 81.89166564941407 +/- 40.19878442392626 name: Water Drop verified: true - type: water_pickup value: 81.56666650772095 +/- 40.211261838762134 name: Water Pickup verified: true - type: cumulative_reward value: 3751.6249725341795 +/- 3124.340359471712 name: Cumulative Reward verified: true --- This model serves as the baseline for the **Aerial Wildfire Suppression** environment, trained and tested on task 2 with difficulty 6 using the Proximal Policy Optimization (PPO) algorithm.

Environment: **Aerial Wildfire Suppression**
Task: 2
Difficulty: 6
Algorithm: PPO
Episode Length: 3000
Training max_steps: 1800000
Testing max_steps: 180000

Train & Test [Scripts](https://github.com/hivex-research/hivex)
Download the [Environment](https://github.com/hivex-research/hivex-environments)