--- library_name: hivex original_train_name: AerialWildfireSuppression_difficulty_7_task_3_run_id_1_train tags: - hivex - hivex-aerial-wildfire-suppression - reinforcement-learning - multi-agent-reinforcement-learning model-index: - name: hivex-AWS-PPO-baseline-task-3-difficulty-7 results: - task: type: sub-task name: minimize_time_fire_burning task-id: 3 difficulty-id: 7 dataset: name: hivex-aerial-wildfire-suppression type: hivex-aerial-wildfire-suppression metrics: - type: crash_count value: 0.06666666865348816 +/- 0.12565617623235442 name: Crash Count verified: true - type: extinguishing_trees value: 7.908333319425583 +/- 16.36833652069324 name: Extinguishing Trees verified: true - type: extinguishing_trees_reward value: 39.541666293144225 +/- 81.84168247486198 name: Extinguishing Trees Reward verified: true - type: fire_out value: 0.25000000223517416 +/- 0.37658049139486893 name: Fire Out verified: true - type: fire_too_close_to_city value: 0.975 +/- 0.11180339887498947 name: Fire too Close to City verified: true - type: preparing_trees value: 509.2750062227249 +/- 625.6526270127268 name: Preparing Trees verified: true - type: preparing_trees_reward value: 509.2750062227249 +/- 625.6526270127268 name: Preparing Trees Reward verified: true - type: water_drop value: 62.22499976158142 +/- 27.943513820272507 name: Water Drop verified: true - type: water_pickup value: 61.808333253860475 +/- 27.991450221952636 name: Water Pickup verified: true - type: cumulative_reward value: 622.9698296546936 +/- 494.1472072826427 name: Cumulative Reward verified: true --- This model serves as the baseline for the **Aerial Wildfire Suppression** environment, trained and tested on task 3 with difficulty 7 using the Proximal Policy Optimization (PPO) algorithm.

Environment: **Aerial Wildfire Suppression**
Task: 3
Difficulty: 7
Algorithm: PPO
Episode Length: 3000
Training max_steps: 1800000
Testing max_steps: 180000

Train & Test [Scripts](https://github.com/hivex-research/hivex)
Download the [Environment](https://github.com/hivex-research/hivex-environments)