--- library_name: hivex original_train_name: AerialWildfireSuppression_difficulty_2_task_4_run_id_0_train tags: - hivex - hivex-aerial-wildfire-suppression - reinforcement-learning - multi-agent-reinforcement-learning model-index: - name: hivex-AWS-PPO-baseline-task-4-difficulty-2 results: - task: type: sub-task name: protect_village task-id: 4 difficulty-id: 2 dataset: name: hivex-aerial-wildfire-suppression type: hivex-aerial-wildfire-suppression metrics: - type: crash_count value: 0.9954545468091964 +/- 0.020327884646360022 name: Crash Count verified: true - type: extinguishing_trees value: 0.28887686133384705 +/- 0.6787165224682201 name: Extinguishing Trees verified: true - type: extinguishing_trees_reward value: 1.4443842768669128 +/- 3.393582550370347 name: Extinguishing Trees Reward verified: true - type: fire_too_close_to_city value: 0.023333333805203436 +/- 0.052815469164145035 name: Fire too Close to City verified: true - type: preparing_trees value: 173.5697063446045 +/- 22.599638913107242 name: Preparing Trees verified: true - type: preparing_trees_reward value: 173.5697063446045 +/- 22.599638913107242 name: Preparing Trees Reward verified: true - type: water_drop value: 1.2260812371969223 +/- 0.2007275933789739 name: Water Drop verified: true - type: water_pickup value: 1.2260812371969223 +/- 0.2007275933789739 name: Water Pickup verified: true - type: cumulative_reward value: 65.80658979415894 +/- 25.50451599293347 name: Cumulative Reward verified: true --- This model serves as the baseline for the **Aerial Wildfire Suppression** environment, trained and tested on task 4 with difficulty 2 using the Proximal Policy Optimization (PPO) algorithm.

Environment: **Aerial Wildfire Suppression**
Task: 4
Difficulty: 2
Algorithm: PPO
Episode Length: 3000
Training max_steps: 1800000
Testing max_steps: 180000

Train & Test [Scripts](https://github.com/hivex-research/hivex)
Download the [Environment](https://github.com/hivex-research/hivex-environments)