--- library_name: hivex original_train_name: AerialWildfireSuppression_difficulty_6_task_4_run_id_0_train tags: - hivex - hivex-aerial-wildfire-suppression - reinforcement-learning - multi-agent-reinforcement-learning model-index: - name: hivex-AWS-PPO-baseline-task-4-difficulty-6 results: - task: type: sub-task name: protect_village task-id: 4 difficulty-id: 6 dataset: name: hivex-aerial-wildfire-suppression type: hivex-aerial-wildfire-suppression metrics: - type: crash_count value: 0.995833334326744 +/- 0.01863389536983029 name: Crash Count verified: true - type: extinguishing_trees value: 0.4878607466816902 +/- 1.5825325244644477 name: Extinguishing Trees verified: true - type: extinguishing_trees_reward value: 2.4393037766218186 +/- 7.912662831428387 name: Extinguishing Trees Reward verified: true - type: fire_too_close_to_city value: 0.008012820780277253 +/- 0.024684854855393578 name: Fire too Close to City verified: true - type: preparing_trees value: 277.3211982727051 +/- 28.61713074868279 name: Preparing Trees verified: true - type: preparing_trees_reward value: 277.3211982727051 +/- 28.61713074868279 name: Preparing Trees Reward verified: true - type: water_drop value: 1.76927210688591 +/- 0.30789056520294616 name: Water Drop verified: true - type: water_pickup value: 1.76927210688591 +/- 0.30789056520294616 name: Water Pickup verified: true - type: cumulative_reward value: 177.74845504760742 +/- 32.464829950692376 name: Cumulative Reward verified: true --- This model serves as the baseline for the **Aerial Wildfire Suppression** environment, trained and tested on task 4 with difficulty 6 using the Proximal Policy Optimization (PPO) algorithm.

Environment: **Aerial Wildfire Suppression**
Task: 4
Difficulty: 6
Algorithm: PPO
Episode Length: 3000
Training max_steps: 1800000
Testing max_steps: 180000

Train & Test [Scripts](https://github.com/hivex-research/hivex)
Download the [Environment](https://github.com/hivex-research/hivex-environments)