File size: 1,484 Bytes
2bdb901
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
---

library_name: hivex
original_train_name: AerialWildfireSuppression_difficulty_9_task_5_run_id_2_train
tags:
- hivex
- hivex-aerial-wildfire-suppression
- reinforcement-learning
- multi-agent-reinforcement-learning
model-index:
- name: hivex-AWS-PPO-baseline-task-5-difficulty-9
  results:
  - task:
      type: sub-task
      name: pick_up_water
      task-id: 5
      difficulty-id: 9
    dataset:
      name: hivex-aerial-wildfire-suppression
      type: hivex-aerial-wildfire-suppression
    metrics:
    - type: water_pickup
      value: 0.9976190477609634 +/- 0.010647942115332154
      name: Water Pickup
      verified: true
    - type: cumulative_reward
      value: 94.99339561462402 +/- 0.2982787930055043
      name: Cumulative Reward
      verified: true
---


This model serves as the baseline for the **Aerial Wildfire Suppression** environment, trained and tested on task <code>5</code> with difficulty <code>9</code> using the Proximal Policy Optimization (PPO) algorithm.<br><br>

Environment: **Aerial Wildfire Suppression**<br>
Task: <code>5</code><br>
Difficulty: <code>9</code><br>
Algorithm: <code>PPO</code><br>
Episode Length: <code>3000</code><br>
Training <code>max_steps</code>: <code>1800000</code><br>

Testing <code>max_steps</code>: <code>180000</code><br><br>

Train & Test [Scripts](https://github.com/hivex-research/hivex)<br>
Download the [Environment](https://github.com/hivex-research/hivex-environments)