File size: 2,195 Bytes
522cadd |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 |
---
library_name: hivex
original_train_name: AerialWildfireSuppression_difficulty_2_task_6_run_id_2_train
tags:
- hivex
- hivex-aerial-wildfire-suppression
- reinforcement-learning
- multi-agent-reinforcement-learning
model-index:
- name: hivex-AWS-PPO-baseline-task-6-difficulty-2
results:
- task:
type: sub-task
name: drop_water
task-id: 6
difficulty-id: 2
dataset:
name: hivex-aerial-wildfire-suppression
type: hivex-aerial-wildfire-suppression
metrics:
- type: crash_count
value: 0.029796552332118153 +/- 0.013558095195825941
name: Crash Count
verified: true
- type: extinguishing_trees
value: 0.3805455264635384 +/- 0.49240092917648515
name: Extinguishing Trees
verified: true
- type: extinguishing_trees_reward
value: 1.9027276199311018 +/- 2.462004661948154
name: Extinguishing Trees Reward
verified: true
- type: preparing_trees
value: 182.82622451782225 +/- 11.38041138346274
name: Preparing Trees
verified: true
- type: preparing_trees_reward
value: 182.82622451782225 +/- 11.38041138346274
name: Preparing Trees Reward
verified: true
- type: water_drop
value: 0.9693701088428497 +/- 0.015894927913693367
name: Water Drop
verified: true
- type: cumulative_reward
value: 181.8419204711914 +/- 12.238550390744056
name: Cumulative Reward
verified: true
---
This model serves as the baseline for the **Aerial Wildfire Suppression** environment, trained and tested on task <code>6</code> with difficulty <code>2</code> using the Proximal Policy Optimization (PPO) algorithm.<br><br>
Environment: **Aerial Wildfire Suppression**<br>
Task: <code>6</code><br>
Difficulty: <code>2</code><br>
Algorithm: <code>PPO</code><br>
Episode Length: <code>3000</code><br>
Training <code>max_steps</code>: <code>1800000</code><br>
Testing <code>max_steps</code>: <code>180000</code><br><br>
Train & Test [Scripts](https://github.com/hivex-research/hivex)<br>
Download the [Environment](https://github.com/hivex-research/hivex-environments) |