--- library_name: hivex original_train_name: AerialWildfireSuppression_difficulty_4_task_6_run_id_1_train tags: - hivex - hivex-aerial-wildfire-suppression - reinforcement-learning - multi-agent-reinforcement-learning model-index: - name: hivex-AWS-PPO-baseline-task-6-difficulty-4 results: - task: type: sub-task name: drop_water task-id: 6 difficulty-id: 4 dataset: name: hivex-aerial-wildfire-suppression type: hivex-aerial-wildfire-suppression metrics: - type: crash_count value: 0.019636338157579303 +/- 0.006296536151540525 name: Crash Count verified: true - type: extinguishing_trees value: 0.20098300511017442 +/- 0.20730763026051913 name: Extinguishing Trees verified: true - type: extinguishing_trees_reward value: 1.0049150258302688 +/- 1.0365381477211943 name: Extinguishing Trees Reward verified: true - type: preparing_trees value: 257.4399574279785 +/- 10.902792920729194 name: Preparing Trees verified: true - type: preparing_trees_reward value: 257.4399574279785 +/- 10.902792920729194 name: Preparing Trees Reward verified: true - type: water_drop value: 0.9798782348632813 +/- 0.007123928367457922 name: Water Drop verified: true - type: water_pickup value: 0.000187265919521451 +/- 0.0008374786518379387 name: Water Pickup verified: true - type: cumulative_reward value: 256.58973693847656 +/- 11.54790983559329 name: Cumulative Reward verified: true --- This model serves as the baseline for the **Aerial Wildfire Suppression** environment, trained and tested on task 6 with difficulty 4 using the Proximal Policy Optimization (PPO) algorithm.

Environment: **Aerial Wildfire Suppression**
Task: 6
Difficulty: 4
Algorithm: PPO
Episode Length: 3000
Training max_steps: 1800000
Testing max_steps: 180000

Train & Test [Scripts](https://github.com/hivex-research/hivex)
Download the [Environment](https://github.com/hivex-research/hivex-environments)