--- library_name: hivex original_train_name: AerialWildfireSuppression_difficulty_7_task_6_run_id_2_train tags: - hivex - hivex-aerial-wildfire-suppression - reinforcement-learning - multi-agent-reinforcement-learning model-index: - name: hivex-AWS-PPO-baseline-task-6-difficulty-7 results: - task: type: sub-task name: drop_water task-id: 6 difficulty-id: 7 dataset: name: hivex-aerial-wildfire-suppression type: hivex-aerial-wildfire-suppression metrics: - type: crash_count value: 0.015272001700941474 +/- 0.008560343748877621 name: Crash Count verified: true - type: extinguishing_trees value: 0.16764693087898194 +/- 0.19795760638271612 name: Extinguishing Trees verified: true - type: extinguishing_trees_reward value: 0.8382346628699452 +/- 0.9897880220029962 name: Extinguishing Trees Reward verified: true - type: preparing_trees value: 295.1830795288086 +/- 11.336644749563497 name: Preparing Trees verified: true - type: preparing_trees_reward value: 295.1830795288086 +/- 11.336644749563497 name: Preparing Trees Reward verified: true - type: water_drop value: 0.9843656837940216 +/- 0.008887930230304724 name: Water Drop verified: true - type: water_pickup value: 0.0007015933631919324 +/- 0.001493842309054032 name: Water Pickup verified: true - type: cumulative_reward value: 294.59887542724607 +/- 11.330578758684899 name: Cumulative Reward verified: true --- This model serves as the baseline for the **Aerial Wildfire Suppression** environment, trained and tested on task 6 with difficulty 7 using the Proximal Policy Optimization (PPO) algorithm.

Environment: **Aerial Wildfire Suppression**
Task: 6
Difficulty: 7
Algorithm: PPO
Episode Length: 3000
Training max_steps: 1800000
Testing max_steps: 180000

Train & Test [Scripts](https://github.com/hivex-research/hivex)
Download the [Environment](https://github.com/hivex-research/hivex-environments)