File size: 1,481 Bytes
c7f506e |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 |
---
library_name: hivex
original_train_name: AerialWildfireSuppression_difficulty_6_task_8_run_id_1_train
tags:
- hivex
- hivex-aerial-wildfire-suppression
- reinforcement-learning
- multi-agent-reinforcement-learning
model-index:
- name: hivex-AWS-PPO-baseline-task-8-difficulty-6
results:
- task:
type: sub-task
name: find_village
task-id: 8
difficulty-id: 6
dataset:
name: hivex-aerial-wildfire-suppression
type: hivex-aerial-wildfire-suppression
metrics:
- type: crash_count
value: 0.13888889290392398 +/- 0.15557644436073165
name: Crash Count
verified: true
- type: cumulative_reward
value: 14.400433158874511 +/- 46.03593174156756
name: Cumulative Reward
verified: true
---
This model serves as the baseline for the **Aerial Wildfire Suppression** environment, trained and tested on task <code>8</code> with difficulty <code>6</code> using the Proximal Policy Optimization (PPO) algorithm.<br><br>
Environment: **Aerial Wildfire Suppression**<br>
Task: <code>8</code><br>
Difficulty: <code>6</code><br>
Algorithm: <code>PPO</code><br>
Episode Length: <code>3000</code><br>
Training <code>max_steps</code>: <code>1800000</code><br>
Testing <code>max_steps</code>: <code>180000</code><br><br>
Train & Test [Scripts](https://github.com/hivex-research/hivex)<br>
Download the [Environment](https://github.com/hivex-research/hivex-environments) |