---
library_name: hivex
original_train_name: DroneBasedReforestation_difficulty_2_task_0_run_id_2_train
tags:
- hivex
- hivex-drone-based-reforestation
- reinforcement-learning
- multi-agent-reinforcement-learning
model-index:
- name: hivex-DBR-PPO-baseline-task-0-difficulty-2
results:
- task:
type: main-task
name: main_task
task-id: 0
difficulty-id: 2
dataset:
name: hivex-drone-based-reforestation
type: hivex-drone-based-reforestation
metrics:
- type: cumulative_distance_reward
value: 2.830362557172775 +/- 0.8731884646965687
name: Cumulative Distance Reward
verified: true
- type: cumulative_distance_until_tree_drop
value: 81.5349309539795 +/- 16.35440671615
name: Cumulative Distance Until Tree Drop
verified: true
- type: cumulative_distance_to_existing_trees
value: 51.15435367584229 +/- 11.396382191072137
name: Cumulative Distance to Existing Trees
verified: true
- type: cumulative_normalized_distance_until_tree_drop
value: 0.28303625583648684 +/- 0.0873188485354732
name: Cumulative Normalized Distance Until Tree Drop
verified: true
- type: cumulative_tree_drop_reward
value: 6.897729444503784 +/- 1.9902223153268046
name: Cumulative Tree Drop Reward
verified: true
- type: out_of_energy_count
value: 0.9944761908054351 +/- 0.023806801146583904
name: Out of Energy Count
verified: true
- type: recharge_energy_count
value: 9.503872995376588 +/- 0.6012074882399382
name: Recharge Energy Count
verified: true
- type: tree_drop_count
value: 0.9864761888980865 +/- 0.03546595715538237
name: Tree Drop Count
verified: true
- type: cumulative_reward
value: 9.817112922668457 +/- 2.8792400845989854
name: Cumulative Reward
verified: true
---
This model serves as the baseline for the **Drone-Based Reforestation** environment, trained and tested on task 0
with difficulty 2
using the Proximal Policy Optimization (PPO) algorithm.
Environment: **Drone-Based Reforestation**
Task: 0
Difficulty: 2
Algorithm: PPO
Episode Length: 2000
Training max_steps
: 1200000
Testing max_steps
: 300000
Train & Test [Scripts](https://github.com/hivex-research/hivex)
Download the [Environment](https://github.com/hivex-research/hivex-environments)