---
library_name: hivex
original_train_name: DroneBasedReforestation_difficulty_6_task_0_run_id_2_train
tags:
- hivex
- hivex-drone-based-reforestation
- reinforcement-learning
- multi-agent-reinforcement-learning
model-index:
- name: hivex-DBR-PPO-baseline-task-0-difficulty-6
results:
- task:
type: main-task
name: main_task
task-id: 0
difficulty-id: 6
dataset:
name: hivex-drone-based-reforestation
type: hivex-drone-based-reforestation
metrics:
- type: cumulative_distance_reward
value: 2.278297426700592 +/- 0.7970550172943512
name: Cumulative Distance Reward
verified: true
- type: cumulative_distance_until_tree_drop
value: 71.83662818908691 +/- 16.138112577766993
name: Cumulative Distance Until Tree Drop
verified: true
- type: cumulative_distance_to_existing_trees
value: 63.50090087890625 +/- 12.724329294351138
name: Cumulative Distance to Existing Trees
verified: true
- type: cumulative_normalized_distance_until_tree_drop
value: 0.22782974272966386 +/- 0.07970550120723825
name: Cumulative Normalized Distance Until Tree Drop
verified: true
- type: cumulative_tree_drop_reward
value: 6.105163459777832 +/- 2.096869181395617
name: Cumulative Tree Drop Reward
verified: true
- type: out_of_energy_count
value: 0.9176825439929962 +/- 0.07301305856737815
name: Out of Energy Count
verified: true
- type: recharge_energy_count
value: 10.315396842956543 +/- 1.078328692209581
name: Recharge Energy Count
verified: true
- type: tree_drop_count
value: 1.0677143037319183 +/- 0.07302193295701627
name: Tree Drop Count
verified: true
- type: cumulative_reward
value: 9.875887503623963 +/- 3.754279000733476
name: Cumulative Reward
verified: true
---
This model serves as the baseline for the **Drone-Based Reforestation** environment, trained and tested on task 0
with difficulty 6
using the Proximal Policy Optimization (PPO) algorithm.
Environment: **Drone-Based Reforestation**
Task: 0
Difficulty: 6
Algorithm: PPO
Episode Length: 2000
Training max_steps
: 1200000
Testing max_steps
: 300000
Train & Test [Scripts](https://github.com/hivex-research/hivex)
Download the [Environment](https://github.com/hivex-research/hivex-environments)