--- library_name: hivex original_train_name: DroneBasedReforestation_difficulty_6_task_0_run_id_2_train tags: - hivex - hivex-drone-based-reforestation - reinforcement-learning - multi-agent-reinforcement-learning model-index: - name: hivex-DBR-PPO-baseline-task-0-difficulty-6 results: - task: type: main-task name: main_task task-id: 0 difficulty-id: 6 dataset: name: hivex-drone-based-reforestation type: hivex-drone-based-reforestation metrics: - type: cumulative_distance_reward value: 2.278297426700592 +/- 0.7970550172943512 name: Cumulative Distance Reward verified: true - type: cumulative_distance_until_tree_drop value: 71.83662818908691 +/- 16.138112577766993 name: Cumulative Distance Until Tree Drop verified: true - type: cumulative_distance_to_existing_trees value: 63.50090087890625 +/- 12.724329294351138 name: Cumulative Distance to Existing Trees verified: true - type: cumulative_normalized_distance_until_tree_drop value: 0.22782974272966386 +/- 0.07970550120723825 name: Cumulative Normalized Distance Until Tree Drop verified: true - type: cumulative_tree_drop_reward value: 6.105163459777832 +/- 2.096869181395617 name: Cumulative Tree Drop Reward verified: true - type: out_of_energy_count value: 0.9176825439929962 +/- 0.07301305856737815 name: Out of Energy Count verified: true - type: recharge_energy_count value: 10.315396842956543 +/- 1.078328692209581 name: Recharge Energy Count verified: true - type: tree_drop_count value: 1.0677143037319183 +/- 0.07302193295701627 name: Tree Drop Count verified: true - type: cumulative_reward value: 9.875887503623963 +/- 3.754279000733476 name: Cumulative Reward verified: true --- This model serves as the baseline for the **Drone-Based Reforestation** environment, trained and tested on task 0 with difficulty 6 using the Proximal Policy Optimization (PPO) algorithm.

Environment: **Drone-Based Reforestation**
Task: 0
Difficulty: 6
Algorithm: PPO
Episode Length: 2000
Training max_steps: 1200000
Testing max_steps: 300000

Train & Test [Scripts](https://github.com/hivex-research/hivex)
Download the [Environment](https://github.com/hivex-research/hivex-environments)