---
library_name: hivex
original_train_name: DroneBasedReforestation_difficulty_10_task_3_run_id_1_train
tags:
- hivex
- hivex-drone-based-reforestation
- reinforcement-learning
- multi-agent-reinforcement-learning
model-index:
- name: hivex-DBR-PPO-baseline-task-3-difficulty-10
results:
- task:
type: sub-task
name: drop_seed
task-id: 3
difficulty-id: 10
dataset:
name: hivex-drone-based-reforestation
type: hivex-drone-based-reforestation
metrics:
- type: cumulative_distance_reward
value: 1.3822244083881379 +/- 0.2799904225640544
name: Cumulative Distance Reward
verified: true
- type: cumulative_distance_until_tree_drop
value: 49.66127479553223 +/- 7.218445332813338
name: Cumulative Distance Until Tree Drop
verified: true
- type: cumulative_distance_to_existing_trees
value: 65.08539611816406 +/- 5.7159717268853285
name: Cumulative Distance to Existing Trees
verified: true
- type: cumulative_normalized_distance_until_tree_drop
value: 0.13822243928909303 +/- 0.027999042034590665
name: Cumulative Normalized Distance Until Tree Drop
verified: true
- type: cumulative_tree_drop_reward
value: 4.014332270622253 +/- 0.740893757159681
name: Cumulative Tree Drop Reward
verified: true
- type: out_of_energy_count
value: 0.03652440816164017 +/- 0.02224060499692208
name: Out of Energy Count
verified: true
- type: recharge_energy_count
value: 10.598072090148925 +/- 0.5897619835270185
name: Recharge Energy Count
verified: true
- type: tree_drop_count
value: 0.9516399455070496 +/- 0.03216850980609787
name: Tree Drop Count
verified: true
- type: cumulative_reward
value: 101.69934463500977 +/- 3.379470856148503
name: Cumulative Reward
verified: true
---
This model serves as the baseline for the **Drone-Based Reforestation** environment, trained and tested on task 3
with difficulty 10
using the Proximal Policy Optimization (PPO) algorithm.
Environment: **Drone-Based Reforestation**
Task: 3
Difficulty: 10
Algorithm: PPO
Episode Length: 2000
Training max_steps
: 1200000
Testing max_steps
: 300000
Train & Test [Scripts](https://github.com/hivex-research/hivex)
Download the [Environment](https://github.com/hivex-research/hivex-environments)