---
library_name: hivex
original_train_name: DroneBasedReforestation_difficulty_3_task_3_run_id_2_train
tags:
- hivex
- hivex-drone-based-reforestation
- reinforcement-learning
- multi-agent-reinforcement-learning
model-index:
- name: hivex-DBR-PPO-baseline-task-3-difficulty-3
results:
- task:
type: sub-task
name: drop_seed
task-id: 3
difficulty-id: 3
dataset:
name: hivex-drone-based-reforestation
type: hivex-drone-based-reforestation
metrics:
- type: cumulative_distance_reward
value: 1.3285970211029052 +/- 0.2026441385418575
name: Cumulative Distance Reward
verified: true
- type: cumulative_distance_until_tree_drop
value: 47.9919889831543 +/- 5.6265548956948175
name: Cumulative Distance Until Tree Drop
verified: true
- type: cumulative_distance_to_existing_trees
value: 65.33616821289063 +/- 5.588311427115504
name: Cumulative Distance to Existing Trees
verified: true
- type: cumulative_normalized_distance_until_tree_drop
value: 0.1328597016632557 +/- 0.0202644141787037
name: Cumulative Normalized Distance Until Tree Drop
verified: true
- type: cumulative_tree_drop_reward
value: 3.886158046722412 +/- 0.6842395486126234
name: Cumulative Tree Drop Reward
verified: true
- type: out_of_energy_count
value: 0.0312901480961591 +/- 0.022431259975135485
name: Out of Energy Count
verified: true
- type: recharge_energy_count
value: 10.788163661956787 +/- 0.49577403931861075
name: Recharge Energy Count
verified: true
- type: tree_drop_count
value: 0.9570524430274964 +/- 0.029623495473389997
name: Tree Drop Count
verified: true
- type: cumulative_reward
value: 102.01719390869141 +/- 3.2560710700635593
name: Cumulative Reward
verified: true
---
This model serves as the baseline for the **Drone-Based Reforestation** environment, trained and tested on task 3
with difficulty 3
using the Proximal Policy Optimization (PPO) algorithm.
Environment: **Drone-Based Reforestation**
Task: 3
Difficulty: 3
Algorithm: PPO
Episode Length: 2000
Training max_steps
: 1200000
Testing max_steps
: 300000
Train & Test [Scripts](https://github.com/hivex-research/hivex)
Download the [Environment](https://github.com/hivex-research/hivex-environments)