--- library_name: hivex original_train_name: DroneBasedReforestation_difficulty_3_task_3_run_id_2_train tags: - hivex - hivex-drone-based-reforestation - reinforcement-learning - multi-agent-reinforcement-learning model-index: - name: hivex-DBR-PPO-baseline-task-3-difficulty-3 results: - task: type: sub-task name: drop_seed task-id: 3 difficulty-id: 3 dataset: name: hivex-drone-based-reforestation type: hivex-drone-based-reforestation metrics: - type: cumulative_distance_reward value: 1.3285970211029052 +/- 0.2026441385418575 name: Cumulative Distance Reward verified: true - type: cumulative_distance_until_tree_drop value: 47.9919889831543 +/- 5.6265548956948175 name: Cumulative Distance Until Tree Drop verified: true - type: cumulative_distance_to_existing_trees value: 65.33616821289063 +/- 5.588311427115504 name: Cumulative Distance to Existing Trees verified: true - type: cumulative_normalized_distance_until_tree_drop value: 0.1328597016632557 +/- 0.0202644141787037 name: Cumulative Normalized Distance Until Tree Drop verified: true - type: cumulative_tree_drop_reward value: 3.886158046722412 +/- 0.6842395486126234 name: Cumulative Tree Drop Reward verified: true - type: out_of_energy_count value: 0.0312901480961591 +/- 0.022431259975135485 name: Out of Energy Count verified: true - type: recharge_energy_count value: 10.788163661956787 +/- 0.49577403931861075 name: Recharge Energy Count verified: true - type: tree_drop_count value: 0.9570524430274964 +/- 0.029623495473389997 name: Tree Drop Count verified: true - type: cumulative_reward value: 102.01719390869141 +/- 3.2560710700635593 name: Cumulative Reward verified: true --- This model serves as the baseline for the **Drone-Based Reforestation** environment, trained and tested on task 3 with difficulty 3 using the Proximal Policy Optimization (PPO) algorithm.

Environment: **Drone-Based Reforestation**
Task: 3
Difficulty: 3
Algorithm: PPO
Episode Length: 2000
Training max_steps: 1200000
Testing max_steps: 300000

Train & Test [Scripts](https://github.com/hivex-research/hivex)
Download the [Environment](https://github.com/hivex-research/hivex-environments)