---
library_name: hivex
original_train_name: DroneBasedReforestation_difficulty_8_task_3_run_id_1_train
tags:
- hivex
- hivex-drone-based-reforestation
- reinforcement-learning
- multi-agent-reinforcement-learning
model-index:
- name: hivex-DBR-PPO-baseline-task-3-difficulty-8
results:
- task:
type: sub-task
name: drop_seed
task-id: 3
difficulty-id: 8
dataset:
name: hivex-drone-based-reforestation
type: hivex-drone-based-reforestation
metrics:
- type: cumulative_distance_reward
value: 1.3624776875972748 +/- 0.28554580887628567
name: Cumulative Distance Reward
verified: true
- type: cumulative_distance_until_tree_drop
value: 48.52491760253906 +/- 6.240952470711805
name: Cumulative Distance Until Tree Drop
verified: true
- type: cumulative_distance_to_existing_trees
value: 64.33281471252441 +/- 6.835068347254503
name: Cumulative Distance to Existing Trees
verified: true
- type: cumulative_normalized_distance_until_tree_drop
value: 0.13624776691198348 +/- 0.02855457901250283
name: Cumulative Normalized Distance Until Tree Drop
verified: true
- type: cumulative_tree_drop_reward
value: 4.091673822402954 +/- 0.9169991715461574
name: Cumulative Tree Drop Reward
verified: true
- type: out_of_energy_count
value: 0.03841008508577943 +/- 0.017628847741743853
name: Out of Energy Count
verified: true
- type: recharge_energy_count
value: 10.952794055938721 +/- 0.6585423813912649
name: Recharge Energy Count
verified: true
- type: tree_drop_count
value: 0.9443181335926056 +/- 0.027217821741009757
name: Tree Drop Count
verified: true
- type: cumulative_reward
value: 101.03555679321289 +/- 3.1604495163459303
name: Cumulative Reward
verified: true
---
This model serves as the baseline for the **Drone-Based Reforestation** environment, trained and tested on task 3
with difficulty 8
using the Proximal Policy Optimization (PPO) algorithm.
Environment: **Drone-Based Reforestation**
Task: 3
Difficulty: 8
Algorithm: PPO
Episode Length: 2000
Training max_steps
: 1200000
Testing max_steps
: 300000
Train & Test [Scripts](https://github.com/hivex-research/hivex)
Download the [Environment](https://github.com/hivex-research/hivex-environments)