---
library_name: hivex
original_train_name: DroneBasedReforestation_difficulty_5_task_6_run_id_1_train
tags:
- hivex
- hivex-drone-based-reforestation
- reinforcement-learning
- multi-agent-reinforcement-learning
model-index:
- name: hivex-DBR-PPO-baseline-task-6-difficulty-5
results:
- task:
type: sub-task
name: explore_furthest_distance_and_return_to_base
task-id: 6
difficulty-id: 5
dataset:
name: hivex-drone-based-reforestation
type: hivex-drone-based-reforestation
metrics:
- type: furthest_distance_explored
value: 137.37953353881835 +/- 12.615748983046979
name: Furthest Distance Explored
verified: true
- type: out_of_energy_count
value: 0.6040635073184967 +/- 0.08043410811022636
name: Out of Energy Count
verified: true
- type: recharge_energy_count
value: 106.3367606653273 +/- 119.63729576848576
name: Recharge Energy Count
verified: true
- type: cumulative_reward
value: 3.9467455238103866 +/- 4.488707334085729
name: Cumulative Reward
verified: true
---
This model serves as the baseline for the **Drone-Based Reforestation** environment, trained and tested on task 6
with difficulty 5
using the Proximal Policy Optimization (PPO) algorithm.
Environment: **Drone-Based Reforestation**
Task: 6
Difficulty: 5
Algorithm: PPO
Episode Length: 2000
Training max_steps
: 1200000
Testing max_steps
: 300000
Train & Test [Scripts](https://github.com/hivex-research/hivex)
Download the [Environment](https://github.com/hivex-research/hivex-environments)