--- library_name: hivex original_train_name: OceanPlasticCollection_task_1_run_id_0_train tags: - hivex - hivex-ocean-plastic-collection - reinforcement-learning - multi-agent-reinforcement-learning model-index: - name: hivex-OPC-PPO-baseline-task-1 results: - task: type: sub-task name: find_highest_polluted_area task-id: 1 dataset: name: hivex-ocean-plastic-collection type: hivex-ocean-plastic-collection metrics: - type: cumulative_reward value: 994.6653747558594 +/- 158.13702190020126 name: "Cumulative Reward" verified: true - type: global_reward value: 226.50474700927734 +/- 57.553598550844015 name: "Global Reward" verified: true - type: local_reward value: 142.19907608032227 +/- 19.368785745326573 name: "Local Reward" verified: true --- This model serves as the baseline for the **Ocean Plastic Collection** environment, trained and tested on task 1 using the Proximal Policy Optimization (PPO) algorithm.

Environment: **Ocean Plastic Collection**
Task: 1
Algorithm: PPO
Episode Length: 5000
Training max_steps: 3000000
Testing max_steps: 150000

Train & Test [Scripts](https://github.com/hivex-research/hivex)
Download the [Environment](https://github.com/hivex-research/hivex-environments)