philippds commited on
Commit
b322354
1 Parent(s): 36d444e

Update README.md

Browse files
Files changed (1) hide show
  1. README.md +46 -33
README.md CHANGED
@@ -1,33 +1,46 @@
1
- ---
2
- library_name: hivex
3
- original_train_name: WindFarmControl_pattern_5_task_1_run_id_1_train
4
- tags:
5
- - hivex
6
- - hivex-wind-farm-control
7
- - reinforcement-learning
8
- - multi-agent-reinforcement-learning
9
- model-index:
10
- - name: hivex-WFC-PPO-baseline-task-1-pattern-5
11
- results:
12
- - task:
13
- type: sub-task
14
- name: avoid_damage
15
- task-id: 1
16
- pattern-id: 5
17
- dataset:
18
- name: hivex-wind-farm-control
19
- type: hivex-wind-farm-control
20
- metrics:
21
- - type: cumulative_reward
22
- value: 4823.083835449219 +/- 42.35842777181897
23
- name: Cumulative Reward
24
- verified: true
25
- - type: avoid_damage_reward
26
- value: 4823.1669409179685 +/- 44.21128926364277
27
- name: Avoid Damage Reward
28
- verified: true
29
- - type: individual_performance
30
- value: 0.0 +/- 0.0
31
- name: Individual Performance
32
- verified: true
33
- ---
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ library_name: hivex
3
+ original_train_name: WindFarmControl_pattern_5_task_1_run_id_1_train
4
+ tags:
5
+ - hivex
6
+ - hivex-wind-farm-control
7
+ - reinforcement-learning
8
+ - multi-agent-reinforcement-learning
9
+ model-index:
10
+ - name: hivex-WFC-PPO-baseline-task-1-pattern-5
11
+ results:
12
+ - task:
13
+ type: sub-task
14
+ name: avoid_damage
15
+ task-id: 1
16
+ pattern-id: 5
17
+ dataset:
18
+ name: hivex-wind-farm-control
19
+ type: hivex-wind-farm-control
20
+ metrics:
21
+ - type: cumulative_reward
22
+ value: 4823.083835449219 +/- 42.35842777181897
23
+ name: Cumulative Reward
24
+ verified: true
25
+ - type: avoid_damage_reward
26
+ value: 4823.1669409179685 +/- 44.21128926364277
27
+ name: Avoid Damage Reward
28
+ verified: true
29
+ - type: individual_performance
30
+ value: 0.0 +/- 0.0
31
+ name: Individual Performance
32
+ verified: true
33
+ ---
34
+
35
+ This model serves as the baseline for the **Wind Farm Control** environment, trained and tested on task <code>1</code> with pattern <code>5</code> using the Proximal Policy Optimization (PPO) algorithm.<br>
36
+ <br>
37
+ Environment: **Wind Farm Control**<br>
38
+ Task: <code>1</code><br>
39
+ Pattern: <code>5</code><br>
40
+ Algorithm: <code>PPO</code><br>
41
+ Episode Length: <code>5000</code><br>
42
+ Training <code>max_steps</code>: <code>8000000</code><br>
43
+ Testing <code>max_steps</code>: <code>8000000</code><br>
44
+ <br>
45
+ Train & Test [Scripts](https://github.com/hivex-research/hivex)<br>
46
+ Download the [Environment](https://github.com/hivex-research/hivex-environments)